RIS-Aided Cooperative Mobile Edge Computing: Computation Efficiency Maximization via Joint Uplink and Downlink Resource Allocation (2403.14775v1)
Abstract: In mobile edge computing (MEC) systems, the wireless channel condition is a critical factor affecting both the communication power consumption and computation rate of the offloading tasks. This paper exploits the idea of cooperative transmission and employing reconfigurable intelligent surface (RIS) in MEC to improve the channel condition and maximize computation efficiency (CE). The resulting problem couples various wireless resources in both uplink and downlink, which calls for the joint design of the user association, receive/downlink beamforming vectors, transmit power of users, task partition strategies for local computing and offloading, and uplink/downlink phase shifts at the RIS. To tackle the challenges brought by the combinatorial optimization problem, the group sparsity structure of the beamforming vectors determined by user association is exploited. Furthermore, while the CE does not explicitly depend on the downlink phase shifts, instead of simply finding a feasible solution, we exploit the hidden relationship between them and convert this relationship into an explicit form for optimization. Then the resulting problem is solved via the alternating maximization framework, and the nonconvexity of each subproblem is handled individually. Simulation results show that cooperative transmission and RIS deployment can significantly improve the CE and demonstrate the importance of optimizing the downlink phase shifts with an explicit form.
- Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourth Quart. 2017.
- Y. Qi, Y. Zhou, Y.-F. Liu, L. Liu, and Z. Pan, “Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing,” IEEE Internet Things J., vol. 8, no. 24, pp. 17 762–17 777, Dec. 2021.
- Y. Peng, X. Tang, Y. Zhou, J. Li, Y. Qi, L. Liu, and H. Lin, “Computing and communication cost-aware service migration enabled by transfer reinforcement learning for dynamic vehicular edge computing networks,” IEEE Trans. Mob. Comput., vol. 23, no. 1, pp. 257–269, Jan. 2024.
- X. Hu, C. Masouros, and K.-K. Wong, “Reconfigurable intelligent surface aided mobile edge computing: From optimization-based to location-only learning-based solutions,” IEEE Trans. Commun., vol. 69, no. 6, pp. 3709–3725, Jun. 2021.
- F. Zhou and R. Q. Hu, “Computation efficiency maximization in wireless-powered mobile edge computing networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3170–3184, May 2020.
- H. Chen, D. Zhao, Q. Chen, and R. Chai, “Joint computation offloading and radio resource allocations in small-cell wireless cellular networks,” IEEE Trans. Green Commun. Netw., vol. 4, no. 3, pp. 745–758, Sep. 2020.
- Z. Chu, P. Xiao, M. Shojafar, D. Mi, J. Mao, and W. Hao, “Intelligent reflecting surface assisted mobile edge computing for internet of things,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 619–623, Mar. 2021.
- H. Xie, M. Xia, P. Wu, S. Wang, and H. V. Poor, “Edge learning for large-scale internet of things with task-oriented efficient communication,” IEEE Trans. Wireless Commun., pp. 1–1, Early Access 2023.
- B. L. Ng, J. S. Evans, S. V. Hanly, and D. Aktas, “Distributed downlink beamforming with cooperative base stations,” IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5491–5499, Dec. 2008.
- L. Liu, Y. Zhou, W. Zhuang, J. Yuan, and L. Tian, “Tractable coverage analysis for hexagonal macrocell-based heterogeneous udns with adaptive interference-aware comp,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 503–517, Jan. 2019.
- L. Liu, Y. Zhou, V. Garcia, L. Tian, and J. Shi, “Load aware joint comp clustering and inter-cell resource scheduling in heterogeneous ultra dense cellular networks,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2741–2755, Mar. 2018.
- Q. Cai, Y. Zhou, L. Liu, Y. Qi, Z. Pan, and H. Zhang, “Collaboration of heterogeneous edge computing paradigms: How to fill the gap between theory and practice,” IEEE Wireless Commun., pp. 1–9, Early Access 2023.
- J. T. Chapman, J. Andreoli-Fang, M. Chauvin, E. C. Reyes, Z. Lu, D. Liu, J. Padden, and A. Bernstein, “Low latency techniques for mobile backhaul over DOCSIS,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.
- L. Su, C. Yang, and S. Han, “The value of channel prediction in CoMP systems with large backhaul latency,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4577–4590, Nov. 2013.
- K. Raaen and I. Kjellmo, “Measuring latency in virtual reality systems,” in Proc. Int. Conf. Entertainment Comput., 2015, pp. 457–462.
- Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing: Partial computation offloading using dynamic voltage scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.
- Z. Chu, P. Xiao, M. Shojafar, D. Mi, W. Hao, J. Shi, and F. Zhou, “Utility maximization for IRS assisted wireless powered mobile edge computing and caching (WP-MECC) networks,” IEEE Trans. Commun., vol. 71, no. 1, pp. 457–472, Jan. 2023.
- K. Li, M. Tao, and Z. Chen, “Exploiting computation replication for mobile edge computing: A fundamental computation-communication tradeoff study,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4563–4578, Jul. 2020.
- Q.-U.-A. Nadeem, H. Alwazani, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Intelligent reflecting surface-assisted multi-user MISO communication: Channel estimation and beamforming design,” IEEE Open J. Commun. Soc., vol. 1, pp. 661–680, May 2020.
- S. Abeywickrama, R. Zhang, Q. Wu, and C. Yuen, “Intelligent reflecting surface: Practical phase shift model and beamforming optimization,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5849–5863, Sep. 2020.
- X. Pei, H. Yin, L. Tan, L. Cao, Z. Li, K. Wang, K. Zhang, and E. Björnson, “RIS-Aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials,” IEEE Trans. Commun., vol. 69, no. 12, pp. 8627–8640, Dec. 2021.
- “5G NR testbed 3.5 GHz coverage results,” https://www.ericsson.com/en/reports-and-papers/research-papers/5g-nr-testbed-3.5-ghz-coverage-results, 2018, accessed: August 2, 2023.
- “White paper: 5G NR millimeter wave network coverage simulation,” https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/5g_nr_millimeter_wave_network_coverage_simulation _studies_for_global_cities.pdf, 2017, accessed: August 2, 2023.
- S. Hua, Y. Zhou, K. Yang, Y. Shi, and K. Wang, “Reconfigurable intelligent surface for green edge inference,” IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 964–979, 2021.
- W. He, D. He, X. Ma, X. Chen, Y. Fang, and W. Zhang, “Joint user association, resource allocation, and beamforming in ris-assisted multi-server mec systems,” IEEE Trans. Wireless Commun., pp. 1–1, Early Access 2023.
- X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, May 2022.
- W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing under stochastic wireless channel,” IEEE Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.
- S. Bi and Y. J. Zhang, “Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.
- Y. Ye, L. Shi, X. Chu, R. Q. Hu, and G. Lu, “Resource allocation in backscatter-assisted wireless powered MEC networks with limited MEC computation capacity,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 10 678–10 694, Dec. 2022.
- X. Yang, S. Hua, Y. Shi, H. Wang, J. Zhang, and K. B. Letaief, “Sparse optimization for green edge AI inference,” J. Commun. Inf. Netw., vol. 5, no. 1, pp. 1–15, Mar. 2020.
- L. Lovasz, “Randomized algorithms in combinatorial optimization,” Combinatorial Optimization, volume 20 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 20, pp. 153–179, 1995.
- F. Neumann, “Combinatorial optimization and the analysis of randomized search heuristics,” Ph.D. dissertation, Christian-Albrechts Universität Kiel, 2006.
- C. Park and J. Lee, “Mobile edge computing-enabled heterogeneous networks,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1038–1051, Feb. 2021.
- Y. Qu, H. Dai, F. Wu, D. Lu, C. Dong, S. Tang, and G. Chen, “Robust offloading scheduling for mobile edge computing,” IEEE Trans. Mob. Comput., vol. 21, no. 7, pp. 2581–2595, Jul. 2022.
- K. Yang, Y. Shi, W. Yu, and Z. Ding, “Energy-efficient processing and robust wireless cooperative transmission for edge inference,” IEEE Internet Things J., vol. 7, no. 10, pp. 9456–9470, Oct. 2020.
- E. Visotsky and U. Madhow, “Optimum beamforming using transmit antenna arrays,” in Proc. IEEE Veh. Technol. Conf, vol. 1, May 1999, pp. 851–856.
- L. Du, S. Shao, G. Yang, J. Ma, Q. Liang, and Y. Tang, “Capacity characterization for reconfigurable intelligent surfaces assisted multiple-antenna multicast,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6940–6953, Oct. 2021.
- Z. Liu, Z. Li, M. Wen, Y. Gong, and Y.-C. Wu, “STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients,” IEEE Trans. Commun., vol. 71, no. 7, pp. 4313–4327, Jul. 2023.
- A. Andresen and V. Spokoiny, “Convergence of an alternating maximization procedure,” The J. Mach. Learn. Res., vol. 17, no. 1, pp. 2229–2281, Apr. 2016.
- E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes],” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142–148, Jul. 2014.
- S. Akila, “l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT sparse signal processing and model selection with applications,” Ph.D. dissertation, UNSW Sydney, 2012.
- I. Pólik and T. Terlaky, “Interior point methods for nonlinear optimization,” in Nonlinear optimization. Springer, Berlin, Heidelberg, 2010, pp. 215–276.
- R. Gribonval and M. Nielsen, “Sparse representations in unions of bases,” IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3320–3325, Dec. 2003.
- Z. Li, S. Wang, Q. Lin, Y. Li, M. Wen, Y.-C. Wu, and H. V. Poor, “Phase shift design in RIS empowered wireless networks: from optimization to AI-based methods,” Network, vol. 2, no. 3, pp. 398–418, 2022.
- Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, 2019.
- C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Nov. 2019.
- Y. Chen, M. Wen, E. Basar, Y.-C. Wu, L. Wang, and W. Liu, “Exploiting reconfigurable intelligent surfaces in edge caching: Joint hybrid beamforming and content placement optimization,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7799–7812, Dec. 2021.
- Y. Li, M. Xia, and Y.-C. Wu, “First-order algorithm for content-centric sparse multicast beamforming in large-scale C-RAN,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 5959–5974, Sep. 2018.
- T. Lipp and S. Boyd, “Variations and extension of the convex-concave procedure,” Optim. Eng., vol. 17, pp. 263–287, 2016.
- K.-G. Nguyen, Q.-D. Vu, L.-N. Tran, and M. Juntti, “Energy efficiency fairness for multi-pair wireless-powered relaying systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 2, pp. 357–373, Feb. 2019.
- Z.-q. Luo, W.-k. Ma, A. M.-c. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.
- Q. Wu and R. Zhang, “Weighted sum power maximization for intelligent reflecting surface aided SWIPT,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 586–590, May 2020.
- T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Latency minimization for intelligent reflecting surface aided mobile edge computing,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2666–2682, Nov. 2020.
- R. Pinto Antonioli, I. M. Braga, G. Fodor, Y. C. B. Silva, A. L. F. de Almeida, and W. C. Freitas, “On the energy efficiency of Cell-Free systems with limited fronthauls: Is coherent transmission always the best alternative?” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8729–8743, Oct. 2022.
- H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of Cell-Free massive MIMO,” IEEE Trans. Green Commun. Netw., vol. 2, no. 1, pp. 25–39, Mar. 2018.