Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical Edge Modes and Entanglement in Maxwell Theory (2403.14542v2)

Published 21 Mar 2024 in hep-th

Abstract: Previous work on black hole partition functions and entanglement entropy suggests the existence of "edge" degrees of freedom living on the (stretched) horizon. We identify a local and "shrinkable" boundary condition on the stretched horizon that gives rise to such degrees of freedom. They can be interpreted as the Goldstone bosons of gauge transformations supported on the boundary, with the electric field component normal to the boundary as their symplectic conjugate. Applying the covariant phase space formalism for manifolds with boundary, we show that both the symplectic form and Hamiltonian exhibit a bulk-edge split. We then show that the thermal edge partition function is that of a codimension-two ghost compact scalar living on the horizon. In the context of a de Sitter static patch, this agrees with the edge partition functions found by Anninos et al. in arbitrary dimensions. It also yields a 4D entanglement entropy consistent with the conformal anomaly. Generalizing to Proca theory, we find that the prescription of Donnelly and Wall reproduces existing results for its edge partition function, while its classical phase space does not exhibit a bulk-edge split.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. W. Donnelly, “Decomposition of entanglement entropy in lattice gauge theory,” Phys. Rev. D 85 (2012) 085004, arXiv:1109.0036 [hep-th].
  2. W. Donnelly and A. C. Wall, “Do gauge fields really contribute negatively to black hole entropy?,” Phys. Rev. D 86 (2012) 064042, arXiv:1206.5831 [hep-th].
  3. D. Radicevic, “Notes on Entanglement in Abelian Gauge Theories,” arXiv:1404.1391 [hep-th].
  4. W. Donnelly, “Entanglement entropy and nonabelian gauge symmetry,” Class. Quant. Grav. 31 no. 21, (2014) 214003, arXiv:1406.7304 [hep-th].
  5. W. Donnelly and A. C. Wall, “Entanglement entropy of electromagnetic edge modes,” Phys. Rev. Lett. 114 no. 11, (2015) 111603, arXiv:1412.1895 [hep-th].
  6. K.-W. Huang, “Central Charge and Entangled Gauge Fields,” Phys. Rev. D 92 no. 2, (2015) 025010, arXiv:1412.2730 [hep-th].
  7. S. Ghosh, R. M. Soni, and S. P. Trivedi, “On The Entanglement Entropy For Gauge Theories,” JHEP 09 (2015) 069, arXiv:1501.02593 [hep-th].
  8. L.-Y. Hung and Y. Wan, “Revisiting Entanglement Entropy of Lattice Gauge Theories,” JHEP 04 (2015) 122, arXiv:1501.04389 [hep-th].
  9. S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba, and H. Tasaki, “On the definition of entanglement entropy in lattice gauge theories,” JHEP 06 (2015) 187, arXiv:1502.04267 [hep-th].
  10. W. Donnelly and A. C. Wall, “Geometric entropy and edge modes of the electromagnetic field,” Phys. Rev. D 94 no. 10, (2016) 104053, arXiv:1506.05792 [hep-th].
  11. D. Radičević, “Entanglement in Weakly Coupled Lattice Gauge Theories,” JHEP 04 (2016) 163, arXiv:1509.08478 [hep-th].
  12. M. Pretko and T. Senthil, “Entanglement entropy of U⁢(1)𝑈1U(1)italic_U ( 1 ) quantum spin liquids,” Phys. Rev. B 94 no. 12, (2016) 125112, arXiv:1510.03863 [cond-mat.str-el].
  13. R. M. Soni and S. P. Trivedi, “Aspects of Entanglement Entropy for Gauge Theories,” JHEP 01 (2016) 136, arXiv:1510.07455 [hep-th].
  14. W. Donnelly and L. Freidel, “Local subsystems in gauge theory and gravity,” JHEP 09 (2016) 102, arXiv:1601.04744 [hep-th].
  15. F. Zuo, “A note on electromagnetic edge modes,” arXiv:1601.06910 [hep-th].
  16. R. M. Soni and S. P. Trivedi, “Entanglement entropy in (3 + 1)-d free U(1) gauge theory,” JHEP 02 (2017) 101, arXiv:1608.00353 [hep-th].
  17. W. Donnelly and G. Wong, “Entanglement branes in a two-dimensional string theory,” JHEP 09 (2017) 097, arXiv:1610.01719 [hep-th].
  18. W. Donnelly, B. Michel, and A. Wall, “Electromagnetic Duality and Entanglement Anomalies,” Phys. Rev. D 96 no. 4, (2017) 045008, arXiv:1611.05920 [hep-th].
  19. W. Donnelly, B. Michel, D. Marolf, and J. Wien, “Living on the Edge: A Toy Model for Holographic Reconstruction of Algebras with Centers,” JHEP 04 (2017) 093, arXiv:1611.05841 [hep-th].
  20. A. Agarwal, D. Karabali, and V. P. Nair, “Gauge-invariant Variables and Entanglement Entropy,” Phys. Rev. D 96 no. 12, (2017) 125008, arXiv:1701.00014 [hep-th].
  21. M. Geiller, “Edge modes and corner ambiguities in 3d Chern–Simons theory and gravity,” Nucl. Phys. B 924 (2017) 312–365, arXiv:1703.04748 [gr-qc].
  22. G. Wong, “A note on entanglement edge modes in Chern Simons theory,” JHEP 08 (2018) 020, arXiv:1706.04666 [hep-th].
  23. M. Geiller, “Lorentz-diffeomorphism edge modes in 3d gravity,” JHEP 02 (2018) 029, arXiv:1712.05269 [gr-qc].
  24. A. Blommaert, T. G. Mertens, H. Verschelde, and V. I. Zakharov, “Edge State Quantization: Vector Fields in Rindler,” JHEP 08 (2018) 196, arXiv:1801.09910 [hep-th].
  25. A. Blommaert, T. G. Mertens, and H. Verschelde, “Edge dynamics from the path integral — Maxwell and Yang-Mills,” JHEP 11 (2018) 080, arXiv:1804.07585 [hep-th].
  26. L. Freidel and D. Pranzetti, “Electromagnetic duality and central charge,” Phys. Rev. D 98 no. 11, (2018) 116008, arXiv:1806.03161 [hep-th].
  27. J. Lin, “Entanglement entropy in Jackiw-Teitelboim Gravity,” arXiv:1807.06575 [hep-th].
  28. H. Gomes, F. Hopfmüller, and A. Riello, “A unified geometric framework for boundary charges and dressings: non-Abelian theory and matter,” Nucl. Phys. B 941 (2019) 249–315, arXiv:1808.02074 [hep-th].
  29. J. Lin and D. Radičević, “Comments on defining entanglement entropy,” Nucl. Phys. B 958 (2020) 115118, arXiv:1808.05939 [hep-th].
  30. W. Donnelly and G. Wong, “Entanglement branes, modular flow, and extended topological quantum field theory,” JHEP 10 (2019) 016, arXiv:1811.10785 [hep-th].
  31. L. Freidel, E. R. Livine, and D. Pranzetti, “Gravitational edge modes: from Kac–Moody charges to Poincaré networks,” Class. Quant. Grav. 36 no. 19, (2019) 195014, arXiv:1906.07876 [hep-th].
  32. H. Gomes and A. Riello, “The quasilocal degrees of freedom of Yang-Mills theory,” SciPost Phys. 10 no. 6, (2021) 130, arXiv:1910.04222 [hep-th].
  33. M. Geiller and P. Jai-akson, “Extended actions, dynamics of edge modes, and entanglement entropy,” JHEP 09 (2020) 134, arXiv:1912.06025 [hep-th].
  34. L. Y. Hung and G. Wong, “Entanglement branes and factorization in conformal field theory,” Phys. Rev. D 104 no. 2, (2021) 026012, arXiv:1912.11201 [hep-th].
  35. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part I. Corner potentials and charges,” JHEP 11 (2020) 026, arXiv:2006.12527 [hep-th].
  36. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part II. Corner metric and Lorentz charges,” JHEP 11 (2020) 027, arXiv:2007.03563 [hep-th].
  37. L. Freidel, M. Geiller, and D. Pranzetti, “Edge modes of gravity. Part III. Corner simplicity constraints,” JHEP 01 (2021) 100, arXiv:2007.12635 [hep-th].
  38. W. Donnelly, Y. Jiang, M. Kim, and G. Wong, “Entanglement entropy and edge modes in topological string theory. Part I. Generalized entropy for closed strings,” JHEP 10 (2021) 201, arXiv:2010.15737 [hep-th].
  39. W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Gravitational edge modes, coadjoint orbits, and hydrodynamics,” JHEP 09 (2021) 008, arXiv:2012.10367 [hep-th].
  40. L. Ciambelli and R. G. Leigh, “Isolated surfaces and symmetries of gravity,” Phys. Rev. D 104 no. 4, (2021) 046005, arXiv:2104.07643 [hep-th].
  41. L. Freidel, R. Oliveri, D. Pranzetti, and S. Speziale, “Extended corner symmetry, charge bracket and Einstein’s equations,” JHEP 09 (2021) 083, arXiv:2104.12881 [hep-th].
  42. L. Ciambelli, R. G. Leigh, and P.-C. Pai, “Embeddings and Integrable Charges for Extended Corner Symmetry,” Phys. Rev. Lett. 128 (2022) , arXiv:2111.13181 [hep-th].
  43. J. R. David and J. Mukherjee, “Entanglement entropy of gravitational edge modes,” JHEP 08 (2022) 065, arXiv:2201.06043 [hep-th].
  44. J. F. G. Barbero, B. Díaz, J. Margalef-Bentabol, and E. J. S. Villaseñor, “Edge observables of the Maxwell-Chern-Simons theory,” Phys. Rev. D 106 no. 2, (2022) 025011, arXiv:2204.06073 [hep-th].
  45. L. Ciambelli and R. G. Leigh, “Universal corner symmetry and the orbit method for gravity,” Nucl. Phys. B 986 (2023) 116053, arXiv:2207.06441 [hep-th].
  46. T. G. Mertens, J. Simón, and G. Wong, “A proposal for 3d quantum gravity and its bulk factorization,” JHEP 06 (2023) 134, arXiv:2210.14196 [hep-th].
  47. W. Donnelly, L. Freidel, S. F. Moosavian, and A. J. Speranza, “Matrix Quantization of Gravitational Edge Modes,” JHEP 05 (2027) 163, arXiv:2212.09120 [hep-th].
  48. P. Cheng, “A black hole toy model with non-local and boundary modes from non-trivial boundary conditions,” Eur. Phys. J. C 83 no. 7, (2023) 570, arXiv:2302.03233 [hep-th].
  49. P. Cheng, “Gauge theories with nontrivial boundary conditions: Black holes,” Phys. Rev. D 107 no. 12, (2023) 125022, arXiv:2302.03847 [hep-th].
  50. H. Z. Chen, R. C. Myers, and A.-M. Raclariu, “Entanglement, Soft Modes, and Celestial Holography,” arXiv:2308.12341 [hep-th].
  51. J. Mukherjee, “Entanglement entropy and the boundary action of edge modes,” arXiv:2310.14690 [hep-th].
  52. G. Wong, “Edge modes, extended TQFT, and measurement based quantum computation,” arXiv:2312.00605 [hep-th].
  53. V. Balasubramanian and C. Cummings, “The entropy of finite gravitating regions,” arXiv:2312.08434 [hep-th].
  54. R. D. Sorkin, “1983 paper on entanglement entropy: ”On the Entropy of the Vacuum outside a Horizon”,” in 10th International Conference on General Relativity and Gravitation, vol. 2, pp. 734–736. 1984. arXiv:1402.3589 [gr-qc].
  55. L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes,” Phys. Rev. D 34 (1986) 373–383.
  56. M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666–669, arXiv:hep-th/9303048.
  57. D. Anninos, F. Denef, Y. T. A. Law, and Z. Sun, “Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions,” JHEP 01 (2022) 088, arXiv:2009.12464 [hep-th].
  58. G. ’t Hooft, “On the Quantum Structure of a Black Hole,” Nucl. Phys. B 256 (1985) 727–745.
  59. D. L. Jafferis and D. K. Kolchmeyer, “Entanglement Entropy in Jackiw-Teitelboim Gravity,” arXiv:1911.10663 [hep-th].
  60. N. Agia and D. L. Jafferis, “Angular Quantization in CFT,” arXiv:2204.11872 [hep-th].
  61. R. C. Myers and A. Sinha, “Holographic c-theorems in arbitrary dimensions,” JHEP 01 (2011) 125, arXiv:1011.5819 [hep-th].
  62. H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
  63. J. S. Dowker, “Entanglement entropy for even spheres,” arXiv:1009.3854 [hep-th].
  64. J. S. Dowker, “Entanglement entropy for odd spheres,” arXiv:1012.1548 [hep-th].
  65. C. Eling, Y. Oz, and S. Theisen, “Entanglement and Thermal Entropy of Gauge Fields,” JHEP 11 (2013) 019, arXiv:1308.4964 [hep-th].
  66. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” arXiv:1703.05448 [hep-th].
  67. M. Grewal, Y. T. A. Law, and K. Parmentier, “Black hole horizon edge partition functions,” JHEP 06 (2023) 025, arXiv:2211.16644 [hep-th].
  68. D. Harlow and J.-Q. Wu, “Covariant phase space with boundaries,” JHEP 10 (2020) 146, arXiv:1906.08616 [hep-th].
  69. W. Donnelly and A. C. Wall, “Unitarity of Maxwell theory on curved spacetimes in the covariant formalism,” Phys. Rev. D 87 no. 12, (2013) 125033, arXiv:1303.1885 [hep-th].
  70. S. Cordes, G. W. Moore, and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories,” Nucl. Phys. B Proc. Suppl. 41 (1995) 184–244, arXiv:hep-th/9411210.
  71. S. Elitzur, G. W. Moore, A. Schwimmer, and N. Seiberg, “Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory,” Nucl. Phys. B 326 (1989) 108–134.
  72. A. Riello, “Edge modes without edge modes,” arXiv:2104.10182 [hep-th].
  73. G. Schwarz, Hodge Decomposition - A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics. Springer Berlin, Heidelberg, 7, 1995.
  74. A. Girouard, M. Karpukhin, M. Levitin, and I. Polterovich, “The Dirichlet-to-Neumann map, the boundary Laplacian, and Hörmander’s rediscovered manuscript,” Journal of Spectral Theory 12 (2022) 195–225, arXiv:2102.06594.
  75. S. N. Solodukhin, “Entanglement entropy of black holes,” Living Rev. Rel. 14 (2011) 8, arXiv:1104.3712 [hep-th].
  76. J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31 (1973) 161–170.
  77. N. Agia and D. L. Jafferis, “The 2d Free Boson Minkowski CFT with Asymptotic Charges,” arXiv:2402.05167 [hep-th].
  78. W. I. Weisberger, “Conformal Invariants for Determinants of Laplacians on Riemann Surfaces,” Commun. Math. Phys. 112 (1987) 633.
  79. C. A. Agon, M. Headrick, D. L. Jafferis, and S. Kasko, “Disk entanglement entropy for a Maxwell field,” Phys. Rev. D 89 no. 2, (2014) 025018, arXiv:1310.4886 [hep-th].
  80. D. N. Kabat, “Black hole entropy and entropy of entanglement,” Nucl. Phys. B 453 (1995) 281–299, arXiv:hep-th/9503016.
  81. S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Conformal QEDd𝑑{}_{d}start_FLOATSUBSCRIPT italic_d end_FLOATSUBSCRIPT, F𝐹Fitalic_F-Theorem and the ϵitalic-ϵ\epsilonitalic_ϵ Expansion,” J. Phys. A 49 no. 13, (2016) 135403, arXiv:1508.06354 [hep-th].
  82. Z. Sun, “Higher spin de Sitter quasinormal modes,” arXiv:2010.09684 [hep-th].
  83. Y. T. A. Law and K. Parmentier, “Black hole scattering and partition functions,” JHEP 10 (2022) 039, arXiv:2207.07024 [hep-th].
  84. E. Witten, “On quantum gauge theories in two-dimensions,” Commun. Math. Phys. 141 (1991) 153–209.
  85. S. N. Solodukhin, “Newton constant, contact terms and entropy,” Phys. Rev. D 91 no. 8, (2015) 084028, arXiv:1502.03758 [hep-th].
  86. F. Denef, S. A. Hartnoll, and S. Sachdev, “Black hole determinants and quasinormal modes,” Class. Quant. Grav. 27 (2010) 125001, arXiv:0908.2657 [hep-th].
  87. R. M. Soni, “A Type I𝐼Iitalic_I Approximation of the Crossed Product,” arXiv:2307.12481 [hep-th].
  88. N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de Sitter space-time,” Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109.
  89. T. S. Bunch and P. C. W. Davies, “Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting,” Proc. Roy. Soc. Lond. A 360 (1978) 117–134.
  90. H. Casini, M. Huerta, J. M. Magán, and D. Pontello, “Logarithmic coefficient of the entanglement entropy of a Maxwell field,” Phys. Rev. D 101 no. 6, (2020) 065020, arXiv:1911.00529 [hep-th].
  91. S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett. 116 no. 23, (2016) 231301, arXiv:1601.00921 [hep-th].
  92. D. Kapec and P. Mitra, “Shadows and soft exchange in celestial CFT,” Phys. Rev. D 105 no. 2, (2022) 026009, arXiv:2109.00073 [hep-th].
  93. R. Forman, “Functional determinants and geometry,” Inventiones mathematicae 88 (1987) 447–493.
  94. M. Grewal and Y. T. A. Law, “Real-time observables in de Sitter thermodynamics,” arXiv:2403.06006 [hep-th].
  95. Y. T. A. Law, “A compendium of sphere path integrals,” JHEP 12 (2021) 213, arXiv:2012.06345 [hep-th].
  96. D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388 (2003) 279–360, arXiv:hep-th/0306138.
  97. M. A. Rubin and C. R. Ordonez, “EIGENVALUES AND DEGENERACIES FOR n-DIMENSIONAL TENSOR SPHERICAL HARMONICS,”.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com