Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Markovian skin effect (2403.14455v2)

Published 21 Mar 2024 in quant-ph

Abstract: The Liouvillian skin effect and the non-Hermitian skin effect have both been used to explain the localization of eigenmodes near system boundaries, though the former is arguably more accurate in some regimes due to its incorporation of quantum jumps. However, these frameworks predominantly focus on weak Markovian interactions, neglecting the potentially crucial role of memory effects. To address this, we investigate, utilizing the powerful hierarchical equations of motion method, how a non-Markovian environment can modify the Liouvillian skin effect. We demonstrate that a non-Markovian environment can induce a ``thick skin effect", where the skin mode broadens and shifts into the bulk. {We further identify that the skin-mode quantum coherence can only be generated when the coupling contains counter-rotating terms}, leading to the coherence-delocalization and oscillatory relaxation with a characteristic linear scaling with system size. Remarkably, both the skin-mode and steady-state coherence exhibit resistance to decoherence from additional environmental noise. These findings highlight the profound impact of system-bath correlations on relaxation and localization, revealing unique phenomena beyond conventional Markovian approximations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. C. H. Lee, L. Li, and J. Gong, Hybrid higher-order skin-topological modes in nonreciprocal systems, Phys. Rev. Lett. 123, 016805 (2019).
  2. N. Okuma and M. Sato, Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number, Phys. Rev. Lett. 126, 176601 (2021).
  3. L. Li, C. H. Lee, and J. Gong, Topological switch for non-Hermitian skin effect in cold-atom systems with loss, Phys. Rev. Lett. 124, 250402 (2020a).
  4. X.-Q. Sun, P. Zhu, and T. L. Hughes, Geometric response and disclination-induced skin effects in non-Hermitian systems, Phys. Rev. Lett. 127, 066401 (2021).
  5. K.-M. Kim and M. J. Park, Disorder-driven phase transition in the second-order non-Hermitian skin effect, Phys. Rev. B 104, L121101 (2021).
  6. K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
  7. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019).
  8. F. Yang, Q.-D. Jiang, and E. J. Bergholtz, Liouvillian skin effect in an exactly solvable model, Phys. Rev. Res. 4, 023160 (2022).
  9. S. Hamanaka, K. Yamamoto, and T. Yoshida, Interaction-induced Liouvillian skin effect in a fermionic chain with a two-body loss, Phys. Rev. B 108, 155114 (2023).
  10. G. Lee, A. McDonald, and A. Clerk, Anomalously large relaxation times in dissipative lattice models beyond the non-Hermitian skin effect, Phys. Rev. B 108, 064311 (2023).
  11. H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the degree of non-Markovian behavior of quantum processes in open systems, Phys. Rev. Lett. 103, 210401 (2009).
  12. Supplemental material of non-Markovian skin effect,   (2024).
  13. A. W. Chin, S. F. Huelga, and M. B. Plenio, Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109, 233601 (2012).
  14. N. Mirkin, M. Larocca, and D. Wisniacki, Quantum metrology in a non-Markovian quantum evolution, Phys. Rev. A 102, 022618 (2020).
  15. T. Guérin, O. Bénichou, and R. Voituriez, Non-Markovian polymer reaction kinetics, Nat. Chem 4, 568–573 (2012).
  16. I. de Vega and D. Alonso, Dynamics of non-Markovian open quantum systems, Rev. Mod. Phys. 89, 015001 (2017).
  17. A. Kato and Y. Tanimura, Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines, J. Chem. Phys 145, 224105 (2016).
  18. Y. Tanimura, Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM), J. Chem. Phys 153, 020901 (2020).
  19. T. Ikeda and Y. Tanimura, Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach, J. Chem. Phys. 147, 014102 (2017).
  20. M. Cainelli, R. Borrelli, and Y. Tanimura, Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach, J. Chem. Phys 157, 084103 (2022).
  21. K. Nakamura and Y. Tanimura, Optical response of laser-driven charge-transfer complex described by Holstein–Hubbard model coupled to heat baths: Hierarchical equations of motion approach, J. Chem. Phys. 155, 064106 (2021).
  22. A. M. Kaufman, B. J. Lester, and C. A. Regal, Cooling a single atom in an optical tweezer to its quantum ground state, Phys. Rev. X 2, 041014 (2012).
  23. J. T. Lü and J.-S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B 76, 165418 (2007).
  24. T. Brandes, Waiting times and noise in single particle transport, Annalen der Physik 520, 477 (2008).
  25. Y. Tanimura and S. Mukamel, Multistate quantum Fokker–Planck approach to nonadiabatic wave packet dynamics in pump–probe spectroscopy, J. Chem. Phys. 101, 3049 (1994).
  26. M. Cainelli and Y. Tanimura, Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron–phonon interactions in a donor domain, J. Chem. Phys. 154, 034107 (2021).
  27. S. Koyanagi and Y. Tanimura, Numerically “exact” simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams, J. Chem. Phys 157, 084110 (2022).
  28. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
  29. G. Guarnieri, M. Kolář, and R. Filip, Steady-state coherences by composite system-bath interactions, Phys. Rev. Lett. 121, 070401 (2018).
  30. S. Longhi, D. Gatti, and G. Della Valle, Robust light transport in non-Hermitian photonic lattices, Sci. Rep. 5, 13376 (2015a).
  31. S. Longhi, D. Gatti, and G. Della Valle, Non-Hermitian transparency and one-way transport in low-dimensional lattices by an imaginary gauge field, Phys. Rev. B 92, 094204 (2015b).
  32. H. Ghaemi-Dizicheh and H. Schomerus, Compatibility of transport effects in non-Hermitian nonreciprocal systems, Phys. Rev. A 104, 023515 (2021).
  33. J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125, 180403 (2020).
  34. J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com