Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning and communication pressures in neural networks: Lessons from emergent communication (2403.14427v3)

Published 21 Mar 2024 in cs.CL

Abstract: Finding and facilitating commonalities between the linguistic behaviors of LLMs and humans could lead to major breakthroughs in our understanding of the acquisition, processing, and evolution of language. However, most findings on human-LLM similarity can be attributed to training on human data. The field of emergent machine-to-machine communication provides an ideal testbed for discovering which pressures are neural agents naturally exposed to when learning to communicate in isolation, without any human language to start with. Here, we review three cases where mismatches between the emergent linguistic behavior of neural agents and humans were resolved thanks to introducing theoretically-motivated inductive biases. By contrasting humans, LLMs, and emergent communication agents, we then identify key pressures at play for language learning and emergence: communicative success, production effort, learnability, and other psycho-/sociolinguistic factors. We discuss their implications and relevance to the field of language evolution and acquisition. By mapping out the necessary inductive biases that make agents' emergent languages more human-like, we not only shed light on the underlying principles of human cognition and communication, but also inform and improve the very use of these models as valuable scientific tools for studying language learning, processing, use, and representation more broadly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lukas Galke (26 papers)
  2. Limor Raviv (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.