Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Over-The-Air Consensus for Collision Avoidance and Formation Control in Multi-Agent Systems (2403.14386v2)

Published 21 Mar 2024 in eess.SY and cs.SY

Abstract: This paper introduces a distributed control method for multi-agent robotic systems employing Over the Air Consensus (OtA-Consensus). Designed for agents with decoupled single-integrator dynamics, this approach aims at efficient formation achievement and collision avoidance. As a distinctive feature, it leverages OtA's ability to exploit interference in wireless channels, a property traditionally considered a drawback, thus enhancing communication efficiency among robots. An analytical proof of asymptotic convergence is established for systems with time-varying communication topologies represented by sequences of strongly connected directed graphs. Comparative evaluations demonstrate significant efficiency improvements over current state-of-the-art methods, especially in scenarios with a large number of agents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control systems magazine, vol. 27, no. 2, pp. 71–82, 2007.
  2. M. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H. Asif, “Multi-agent cooperative control consensus: A comparative review,” Electronics, vol. 7, no. 2, p. 22, 2018.
  3. F. Molinari and J. Raisch, “Efficient consensus-based formation control with discrete-time broadcast updates,” 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4172–4177, 2019.
  4. R. Falconi, L. Sabattini, C. Secchi, C. Fantuzzi, and C. Melchiorri, “Edge-weighted consensus-based formation control strategy with collision avoidance,” Robotica, vol. 33, no. 2, pp. 332–347, 2015.
  5. L. Sabattini, C. Secchi, and C. Fantuzzi, “Potential based control strategy for arbitrary shape formations of mobile robots,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3762–3767, 2009.
  6. R. Toyota and T. Namerikawa, “Formation control of multi-agent system considering obstacle avoidance,” in 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 446–451, 2017.
  7. X. Yi, J. Wei, D. V. Dimarogonas, and K. H. Johansson, “Formation control for multi-agent systems with connectivity preservation and event-triggered controllers,” CoRR, vol. abs/1611.03105, 2016.
  8. J. Almeida, C. Silvestre, A. M. Pascoal, and P. J. Antsaklis, “Continuous-time consensus with discrete-time communication,” in 2009 European Control Conference (ECC), pp. 749–754, 2009.
  9. Z. Wang, Y. Zhao, Y. Zhou, Y. Shi, C. Jiang, and K. B. Letaief, “Over-the-air computation: Foundations, technologies, and applications,” arXiv preprint arXiv:2210.10524, 2022.
  10. M. Zheng, M. Goldenbaum, S. Stańczak, and H. Yu, “Fast average consensus in clustered wireless sensor networks by superposition gossiping,” in 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1982–1987, 2012.
  11. F. Molinari, S. Stanczak, and J. Raisch, “Exploiting the superposition property of wireless communication for average consensus problems in multi-agent systems,” in 2018 European Control Conference (ECC), pp. 1766–1772, 2018.
  12. F. Molinari, N. Agrawal, S. Stańczak, and J. Raisch, “Max-consensus over fading wireless channels,” IEEE Transactions on Control of Network Systems, vol. 8, no. 2, pp. 791–802, 2021.
  13. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 1985.
  14. S. Schwarz, “New kinds of theorems on non-negative matrices,” Czechoslovak Mathematical Journal, vol. 16, no. 2, pp. 285–295, 1966.
  15. Wiley New York, 1988.
  16. J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic matrices,” Proceedings of the American Mathematical Society, vol. 14, no. 5, pp. 733–737, 1963.

Summary

We haven't generated a summary for this paper yet.