Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Second-Order Rates for Quantum Information Decoupling (2403.14338v1)

Published 21 Mar 2024 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: In this paper, we consider the standard quantum information decoupling, in which Alice aims to decouple her system from the environment by local operations and discarding some of her systems. To achieve an $\varepsilon$-decoupling with trace distance as the error criterion, we establish a near-optimal one-shot characterization for the largest dimension of the remainder system in terms of the conditional $(1-\varepsilon)$-hypothesis-testing entropy. When the underlying system is independent and identically prepared, our result leads to the matched second-order rate as well as the matched moderate deviation rate. As an application, we find an achievability bound in entanglement distillation protocol, where the objective is for Alice and Bob to transform their quantum state to maximally entangled state with largest possible dimension using only local operations and one-way classical communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. Horodecki, J. Oppenheim, and A. Winter, “Quantum state merging and negative information,” Comm. Math. Phys., (269, 107), quant-ph/0512247, 2007.
  2. M. Berta, M. Christandl, and R. Renner, “The quantum reverse Shannon theorem based on one-shot information theory,” Communications in Mathematical Physics, vol. 306, no. 3, pp. 579–615, aug 2011.
  3. C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter, “Quantum reverse shannon theorem,” arXiv:0912.5537v2, 2009.
  4. F. Buscemi, “Private quantum decoupling and secure disposal of information,” New Journal of Physics, 11:123002, 2009.
  5. B. Groisman, S. Popescu, and A. Winter, “Quantum, classical, and total amount of correlations in quantum state,” Physical Review A, 72:032317, 2005.
  6. N. Linden, S. Popescu, A. J. Short, and A. Winter, “Quantum mechanical evolution towards thermal equilibrium,” Physical Review E, 79:061103, 2009.
  7. P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in random subsystems,” Journal of High Energy Physics, 07:120, 2007.
  8. F. G. Brandao and M. Horodecki, “An area law for entanglement from exponential decay of correlations,” Nature Physics, advance online publication, 2013.
  9. M. Tomamichel, R. Colbeck, and R. Renner, “Duality between smooth min- and max-entropies,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4674–4681, sep 2010.
  10. M. Tomamichel and M. Hayashi, “A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks,” IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7693–7710, Nov. 2013, arXiv:1208.1478.
  11. C. Majenz, M. Berta, F. Dupuis, R. Renner, and M. Christandl, “Catalytic decoupling of quantum information,” Phys. Rev. Lett., vol. 118, p. 080503, Feb 2017.
  12. K. Li, Y. Yao, and M. Hayashi, “Tight exponential analysis for smoothing the max-relative entropy and for quantum privacy amplification,” arXiv:2111.01075 [quant-ph], 2022.
  13. K. Li and Y. Yao, “Reliability function of quantum information decoupling,” arXiv:2111.06343 [quant-ph], 2021.
  14. F. Dupuis, M. Berta, J. Wullschleger, and R. Renner, “One-shot decoupling,” arXiv:1012.6044v3 [quant-ph], 2014.
  15. E. M. Rains, “Bound on distillable entanglement,” Phys. Rev. A, vol. 60, no. 1, pp. 179–184, Jul., 1999.
  16. E. Rains, “A semidefinite program for distillable entanglement,” IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 2921–2933, 2001.
  17. M. Horodecki, P. Horodecki, and R. Horodecki, “Asymptotic manipulations of entanglement can exhibit genuine irreversibility,” Phys. Rev. Lett., vol. 84, no. 19, pp. 4260–4263, 2000.
  18. M. Christandl and A. Winter, ““squashed entanglement”: An additive entanglement measure,” Journal of Mathematical Physics, vol. 45, no. 3, pp. 829–840, 2004.
  19. F. Leditzky, N. Datta, and G. Smith, “Useful states and entanglement distillation,” IEEE Trans. Inform. Theory, vol. 64, no. 7, pp. 4689–4708, 2018.
  20. X. Wang and R. Duan, “Improved semidefinite programming upper bound on distillable entanglement,” Phys. Rev. A, vol. 94, no. 5, p. 050301, 2016.
  21. K. Fang, X. Wang, M. Tomamichel, and R. Duan, “Non-asymptotic entanglement distillation,” arXiv:1706.0622, 2019.
  22. N. Datta and F. Leditzky, “Second-order asymptotics for source coding, dense coding, and pure-state entanglement conversions,” IEEE Trans. Inform. Theory, vol. 61, no. 1, pp. 582–608, 2015.
  23. C. Majenz, “Entropy in quantum information theory – communication and cryptography,” arXiv:1810.10436 [quant-ph], 2018.
  24. M. Hayashi and H. Nagaoka, “General formulas for capacity of classical-quantum channels,” IEEE Transaction on Information Theory, vol. 49, no. 7, pp. 1753–1768, Jul 2003.
  25. H. Nagaoka and M. Hayashi, “An information-spectrum approach to classical and quantum hypothesis testing for simple hypotheses,” IEEE Transactions on Information Theory, vol. 53, no. 2, pp. 534–549, Feb 2007.
  26. L. Wang and R. Renner, “One-Shot Classical-Quantum Capacity and Hypothesis Testing,” Physical Review Letters, vol. 108, no. 20, p. 200501, May 2012.
  27. K. Li, “Second-order asymptotics for quantum hypothesis testing,” The Annals of Statistics, vol. 42, no. 1, pp. 171–189, Feb 2014.
  28. H. Umegaki, “Conditional expectation in an operator algebra. IV. entropy and information,” Kodai Mathematical Seminar Reports, vol. 14, no. 2, pp. 59–85, 1962.
  29. F. Hiai and D. Petz, “The proper formula for relative entropy and its asymptotics in quantum probability,” Communications in Mathematical Physics, vol. 143, no. 1, pp. 99–114, Dec 1991.
  30. R. Renner, “Security of quantum key distribution,” Ph.D. Thesis (ETH), arXiv:quant-ph/0512258, 2005.
  31. ——, “Optimal sequence of quantum measurements in the sense of Stein’s lemma in quantum hypothesis testing,” Journal of Physics A: Mathematical and General, vol. 35, no. 50, pp. 10 759–10 773, Dec 2002.
  32. C. T. Chubb, V. Y. F. Tan, and M. Tomamichel, “Moderate deviation analysis for classical communication over quantum channels,” Communications in Mathematical Physics, vol. 355, no. 3, pp. 1283–1315, Nov 2017.
  33. R. L. Frank and E. H. Lieb, “Monotonicity of a relative Rényi entropy,” Journal of Mathematical Physics, vol. 54, no. 12, p. 122201, 2013.
  34. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, “On quantum Rényi entropies: A new generalization and some properties,” Journal of Mathematical Physics, vol. 54, no. 12, p. 122203, 2013.
  35. M. M. Wilde, A. Winter, and D. Yang, “Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy,” Communications in Mathematical Physics, vol. 331, no. 2, pp. 593–622, Jul 2014.
  36. C. W. Helstrom, “Detection theory and quantum mechanics,” Information and Control, vol. 10, no. 3, pp. 254–291, mar 1967.
  37. A. Holevo, “The analogue of statistical decision theory in the noncommutative probability theory,” Proc. Moscow Math. Soc., vol. 26, pp. 133–149, 1972.
  38. S. Beigi and A. Gohari, “Quantum achievability proof via collision relative entropy,” IEEE Transactions on Information Theory 60(12), 7980-7986, 2014.
  39. S. Khatri and M. M.Wilde, “Principles of quantum communication theory: A modern approach,” arXiv:2011.04672, 2020.
  40. H.-C. Cheng and M.-H. Hsieh, “Moderate deviation analysis for classical-quantum channels and quantum hypothesis testing,” IEEE Transactions on Information Theory, vol. 64, no. 2, pp. 1385–1403, feb 2018.
  41. ——, “The decoupling approach to quantum information theory,” arXiv preprint arXiv:1004.1641, 2010.
  42. ——, “The decoupling approach to quantum information theory,” arXiv:1004.1641 [quant-ph], 2010.
  43. M. M. Wilde, M. Tomamichel, and M. Berta, “Converse bounds for private communication over quantum channels,” arXiv:1602.08898, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com