Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DexDribbler: Learning Dexterous Soccer Manipulation via Dynamic Supervision (2403.14300v1)

Published 21 Mar 2024 in cs.RO and cs.AI

Abstract: Learning dexterous locomotion policy for legged robots is becoming increasingly popular due to its ability to handle diverse terrains and resemble intelligent behaviors. However, joint manipulation of moving objects and locomotion with legs, such as playing soccer, receive scant attention in the learning community, although it is natural for humans and smart animals. A key challenge to solve this multitask problem is to infer the objectives of locomotion from the states and targets of the manipulated objects. The implicit relation between the object states and robot locomotion can be hard to capture directly from the training experience. We propose adding a feedback control block to compute the necessary body-level movement accurately and using the outputs as dynamic joint-level locomotion supervision explicitly. We further utilize an improved ball dynamic model, an extended context-aided estimator, and a comprehensive ball observer to facilitate transferring policy learned in simulation to the real world. We observe that our learning scheme can not only make the policy network converge faster but also enable soccer robots to perform sophisticated maneuvers like sharp cuts and turns on flat surfaces, a capability that was lacking in previous methods. Video and code are available at https://github.com/SysCV/soccer-player

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Y. Ji, G. B. Margolis, and P. Agrawal, “DribbleBot: Dynamic Legged Manipulation in the Wild,” arXiv, Apr. 2023.
  2. F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking control,” Science Robotics, vol. 9, no. 86, 2024.
  3. G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control for generalization with multiplicity of behavior,” in Conference on Robot Learning.   PMLR, 2023.
  4. J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics, Jan. 2019.
  5. N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in minutes using massively parallel deep reinforcement learning,” in Conference on Robot Learning.   PMLR, 2022.
  6. I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning robust quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.
  7. A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid Motor Adaptation for Legged Robots,” in Robotics: Science and Systems XVII, Jun. 2021.
  8. G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent Training of a Control Policy and a State Estimator for Dynamic and Robust Legged Locomotion,” IEEE Robotics and Automation Letters, vol. 7, Apr. 2022.
  9. T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, M. Wulfmeier, J. Humplik, S. Tunyasuvunakool, N. Y. Siegel, R. Hafner, M. Bloesch, K. Hartikainen, A. Byravan, L. Hasenclever, Y. Tassa, F. Sadeghi, N. Batchelor, F. Casarini, S. Saliceti, C. Game, N. Sreendra, K. Patel, M. Gwira, A. Huber, N. Hurley, F. Nori, R. Hadsell, and N. Heess, “Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning,” arXiv, Apr. 2023.
  10. K. Dong, K. Pereida, F. Shkurti, and A. P. Schoellig, “Catch the Ball: Accurate High-Speed Motions for Mobile Manipulators via Inverse Dynamics Learning,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2020.
  11. K. Su and S. Shen, “Catching a Flying Ball with a Vision-Based Quadrotor,” in 2016 International Symposium on Experimental Robotics, ser. Springer Proceedings in Advanced Robotics, 2017.
  12. S. Kim, A. Shukla, and A. Billard, “Catching Objects in Flight,” IEEE Transactions on Robotics, vol. 30, Oct. 2014.
  13. B. Forrai, T. Miki, D. Gehrig, M. Hutter, and D. Scaramuzza, “Event-based Agile Object Catching with a Quadrupedal Robot,” arXiv, Apr. 2023.
  14. K. Ploeger, M. Lutter, and J. Peters, “High acceleration reinforcement learning for real-world juggling with binary rewards,” in Conference on Robot Learning.   PMLR, 2021.
  15. A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot: Learning to Throw Arbitrary Objects With Residual Physics,” IEEE Transactions on Robotics, vol. 36, Aug. 2020.
  16. A. Heins, M. Jakob, and A. P. Schoellig, “Mobile Manipulation in Unknown Environments with Differential Inverse Kinematics Control,” in 2021 18th Conference on Robots and Vision (CRV), May 2021.
  17. Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning a unified policy for manipulation and locomotion,” in Conference on Robot Learning.   PMLR, 2023.
  18. G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim, “MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018.
  19. R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang, “Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers,” arXiv, May 2022.
  20. A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion with cross-modal supervision,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.
  21. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5, Oct. 2020.
  22. Z. Li, J. Zeng, A. Thirugnanam, and K. Sreenath, “Bridging Model-based Safety and Model-free Reinforcement Learning through System Identification of Low Dimensional Linear Models,” arXiv, May 2022.
  23. S. Lyu, H. Zhao, and D. Wang, “A composite control strategy for quadruped robot by integrating reinforcement learning and model-based control,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
  24. S. Zhou, M. K. Helwa, and A. P. Schoellig, “Deep neural networks as add-on modules for enhancing robot performance in impromptu trajectory tracking,” The International Journal of Robotics Research, vol. 39, Oct. 2020.
  25. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup: The Robot World Cup Initiative,” in Proceedings of the First International Conference on Autonomous Agents, Feb. 1997.
  26. M. Veloso, W. Uther, M. Fijita, M. Asada, and H. Kitano, “Playing soccer with legged robots,” in 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 1998.
  27. M. Friedmann, J. Kiener, S. Petters, D. Thomas, O. Von Stryk, and H. Sakamoto, “Versatile, high-quality motions and behavior control of a humanoid soccer robot,” International Journal of Humanoid Robotics, vol. 05, Sep. 2008.
  28. S. Bohez, S. Tunyasuvunakool, P. Brakel, F. Sadeghi, L. Hasenclever, Y. Tassa, E. Parisotto, J. Humplik, T. Haarnoja, R. Hafner, M. Wulfmeier, M. Neunert, B. Moran, N. Siegel, A. Huber, F. Romano, N. Batchelor, F. Casarini, J. Merel, R. Hadsell, and N. Heess, “Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors,” arXiv, Mar. 2022.
  29. Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath, “Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2022.
  30. X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng, and K. Sreenath, “Creating a dynamic quadrupedal robotic goalkeeper with reinforcement learning,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
  31. A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori, T. Haarnoja, B. Moran, S. Bohez, F. Sadeghi, B. Vujatovic, and N. Heess, “NeRF2Real: Sim2real Transfer of Vision-guided Bipedal Motion Skills using Neural Radiance Fields,” arXiv, Oct. 2022.
  32. S. Liu, G. Lever, Z. Wang, J. Merel, S. M. A. Eslami, D. Hennes, W. M. Czarnecki, Y. Tassa, S. Omidshafiei, A. Abdolmaleki, N. Y. Siegel, L. Hasenclever, L. Marris, S. Tunyasuvunakool, H. F. Song, M. Wulfmeier, P. Muller, T. Haarnoja, B. Tracey, K. Tuyls, T. Graepel, and N. Heess, “From motor control to team play in simulated humanoid football,” Science Robotics, vol. 7, Aug. 2022.
  33. Y. C. Zhou, B. D. Wright, R. Y. Yang, B. H. Xu, and A. B. Yu, “Rolling friction in the dynamic simulation of sandpile formation,” Physica A: Statistical Mechanics and its Applications, vol. 269, Jul. 1999.
  34. M. H. Raibert and E. R. Tello, “Legged Robots That Balance,” IEEE Expert, vol. 1, Nov. 1986.
  35. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms,” arXiv, Aug. 2017.
  36. J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO: From YOLOv1 and Beyond,” arXiv, Oct. 2023.
  37. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in ECCV 2014, 2014, vol. 8693.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com