Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fundamentals of Delay-Doppler Communications: Practical Implementation and Extensions to OTFS (2403.14192v1)

Published 21 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: The recently proposed orthogonal time frequency space (OTFS) modulation, which is a typical Delay-Doppler (DD) communication scheme, has attracted significant attention thanks to its appealing performance over doubly-selective channels. In this paper, we present the fundamentals of general DD communications from the viewpoint of the Zak transform. We start our study by constructing DD domain basis functions aligning with the time-frequency (TF)-consistency condition, which are globally quasi-periodic and locally twisted-shifted. We unveil that these features are translated to unique signal structures in both time and frequency, which are beneficial for communication purposes. Then, we focus on the practical implementations of DD Nyquist communications, where we show that rectangular windows achieve perfect DD orthogonality, while truncated periodic signals can obtain sufficient DD orthogonality. Particularly, smoothed rectangular window with excess bandwidth can result in a slightly worse orthogonality but better pulse localization in the DD domain. Furthermore, we present a practical pulse shaping framework for general DD communications and derive the corresponding input-output relation under various shaping pulses. Our numerical results agree with our derivations and also demonstrate advantages of DD communications over conventional orthogonal frequency-division multiplexing (OFDM).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. S. Li, W. Yuan, Z. Wei, J. Yuan, B. Bai, and G. Caire, “On the pulse shaping for delay-Doppler communications,” in IEEE Globe Commun. Conf., 2023, pp. 1–6.
  2. R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” in Proc. 2017 IEEE Wireless Commun. Net. Conf., Mar. 2017, pp. 1–6.
  3. Z. Wei, W. Yuan, S. Li, J. Yuan, G. Bharatula, R. Hadani, and L. Hanzo, “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE Wireless Commun., vol. 28, no. 4, pp. 136–144, Aug. 2021.
  4. W. Yuan, S. Li, Z. Wei, Y. Cui, J. Jiang, H. Zhang, and P. Fan, “New delay Doppler communication paradigm in 6G era: A survey of orthogonal time frequency space (OTFS),” China Commun., vol. 20, no. 6, pp. 1–25, Jun. 2023.
  5. Z. Wei, S. Li, W. Yuan, R. Schober, and G. Caire, “Orthogonal time frequency space modulation-Part I: Fundamentals and challenges ahead,” IEEE Commun. Lett., vol. 27, no. 1, pp. 4–8, Jan. 2023.
  6. S. Li, W. Yuan, Z. Wei, R. Schober, and G. Caire, “Orthogonal time frequency space modulation-Part II: Transceiver designs,” IEEE Commun. Lett., vol. 27, no. 1, pp. 9–13, Jan. 2023.
  7. W. Yuan, Z. Wei, S. Li, R. Schober, and G. Caire, “Orthogonal time frequency space modulation-Part III: ISAC and potential applications,” IEEE Commun. Lett., vol. 27, no. 1, pp. 14–18, Jan. 2023.
  8. P. Raviteja, K. T. Phan, and Y. Hong, “Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4906–4917, May 2019.
  9. P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Effective diversity of OTFS modulation,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 249–253, Feb. 2020.
  10. S. Li, J. Yuan, Z. Wei, B. Bai, and D. W. K. Ng, “Performance analysis of coded OTFS systems over high-mobility channels,” IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 6033–6048, Sep. 2021.
  11. M. Liu, S. Li, Z. Wei, and B. Bai, “Near optimal hybrid digital-analog beamforming for point-to-point MIMO-OTFS transmissions,” in IEEE Wireless Commun.Netw. Conf. Workshop, 2023, pp. 1–6.
  12. S. Li, J. Yuan, P. Fitzpatrick, T. Sakurai, and G. Caire, “Delay-Doppler domain Tomlinson-Harashima precoding for OTFS-based downlink MU-MIMO transmissions: Linear complexity implementation and scaling law analysis,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2153–2169, Apr. 2023.
  13. S. K. Dehkordi, L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, “Beam-space MIMO radar for joint communication and sensing with OTFS modulation,” IEEE Trans. Wireless Commun., vol. 22, no. 10, pp. 6737–6749, Oct. 2023.
  14. S. Li, W. Yuan, C. Liu, Z. Wei, J. Yuan, B. Bai, and D. W. K. Ng, “A novel ISAC transmission framework based on spatially-spread orthogonal time frequency space modulation,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1854–1872, Jun. 2022.
  15. P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, “Interference cancellation and iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.
  16. A. RezazadehReyhani, A. Farhang, M. Ji, R. R. Chen, and B. Farhang-Boroujeny, “Analysis of discrete-time MIMO OFDM-Based orthogonal time frequency space modulation,” in Proc. 2018 IEEE Int. Conf. Commun., May 2018, pp. 1–6.
  17. H. Lin and J. Yuan, “Orthogonal delay-Doppler division multiplexing modulation,” IEEE Trans. Wireless Commun., vol. 21, no. 12, pp. 11 024–11 037, Dec. 2022.
  18. P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, “Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 957–961, Jan. 2019.
  19. H. Lin and J. Yuan, “On delay-Doppler plane orthogonal pulse,” in IEEE Global Comm. Conf., Dec. 2022, pp. 5589–5594.
  20. M. Bayat and A. Farhang, “A unified framework for pulse-shaping on delay-Doppler plane,” arXiv preprint arXiv:2311.12543, 2023.
  21. A. J. Janssen, “The Zak transform: A signal transform for sampled time-continuous signals.” Philips J. Res., vol. 43, no. 1, pp. 23–69, 1988.
  22. F. Lampel, A. Avarado, and F. M. Willems, “On OTFS using the discrete Zak transform,” in IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2022, pp. 729–734.
  23. S. K. Mohammed, “Derivation of OTFS modulation from first principles,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7619–7636, Aug. 2021.
  24. S. K. Mohammed, R. Hadani, A. Chockalingam, and R. Calderbank, “OTFS–a mathematical foundation for communication and radar sensing in the delay-Doppler domain,” IEEE BITS Inf. Theory Mag., vol. 2, no. 2, pp. 36–55, Nov. 2022.
  25. ——, “OTFS–predictability in the delay-Doppler domain and its value to communication and radar sensing,” arXiv preprint arXiv:2302.08705, 2023.
  26. L. Gaudio, G. Colavolpe, and G. Caire, “OTFS vs. OFDM in the presence of sparsity: A fair comparison,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 4410–4423, Dec. 2022.
  27. A. Kavcic, X. Ma, and M. Mitzenmacher, “Binary intersymbol interference channels: Gallager codes, density evolution, and code performance bounds,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1636–1652, Jun. 2003.
  28. A. Teuner and B. Hosticka, “Adaptive Gabor transformation for image processing,” IEEE Trans. Image Process., vol. 2, no. 1, pp. 112–117, Jan. 1993.
  29. D. Dunn and W. Higgins, “Optimal Gabor filters for texture segmentation,” IEEE Trans. Image Process., vol. 4, no. 7, pp. 947–964, Jul. 1995.
  30. P. Jung and G. Wunder, “The WSSUS pulse design problem in multicarrier transmission,” IEEE Trans. Commun., vol. 55, no. 10, pp. 1918–1928, Oct. 2007.
  31. H. Bölcskei and F. Hlawatsch, “Discrete Zak transforms, polyphase transforms, and applications,” IEEE Trans. signal process., vol. 45, no. 4, pp. 851–866, Apr. 1997.
  32. S. Li, W. Yuan, Z. Wei, and J. Yuan, “Cross domain iterative detection for orthogonal time frequency space modulation,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2227–2242, Apr. 2022.
  33. A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects,” IEEE Commun. Surv. Tutor., vol. 16, no. 3, pp. 1312–1338, Dec. 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com