Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReFeree: Radar-based efficient global descriptor using a Feature and Free space for Place Recognition (2403.14176v4)

Published 21 Mar 2024 in cs.RO

Abstract: Radar is highlighted for robust sensing capabilities in adverse weather conditions (e.g. dense fog, heavy rain, or snowfall). In addition, Radar can cover wide areas and penetrate small particles. Despite these advantages, Radar-based place recognition remains in the early stages compared to other sensors due to its unique characteristics such as low resolution, and significant noise. In this paper, we propose a Radarbased place recognition utilizing a descriptor called ReFeree using a feature and free space. Unlike traditional methods, we overwhelmingly summarize the Radar image. Despite being lightweight, it contains semi-metric information and is also outstanding from the perspective of place recognition performance. For concrete validation, we test a single session from the MulRan dataset and a multi-session from the Oxford Offroad Radar, Oxford Radar RobotCar, and the Boreas dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. H. Kim, G. Kang, S. Jeong, S. Ma, and Y. Cho, “Robust imaging sonar-based place recognition and localization in underwater environments,” in Proc. IEEE Intl. Conf. on Robot. and Automat.   IEEE, 2023, pp. 1083–1089.
  2. G. Kim and A. Kim, “Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map,” in Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Sys.   IEEE, 2018, pp. 4802–4809.
  3. H. Jang, M. Jung, and A. Kim, “Raplace: Place recognition for imaging radar using radon transform and mutable threshold,” in Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Sys.   IEEE, 2023, pp. 11 194–11 201.
  4. M. Gadd and P. Newman, “Open-radvlad: Fast and robust radar place recognition,” arXiv preprint arXiv:2401.15380, 2024.
  5. G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “Mulran: Multimodal range dataset for urban place recognition,” in Proc. IEEE Intl. Conf. on Robot. and Automat.   IEEE, 2020, pp. 6246–6253.
  6. D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The oxford radar robotcar dataset: A radar extension to the oxford robotcar dataset,” in Proc. IEEE Intl. Conf. on Robot. and Automat.   IEEE, 2020, pp. 6433–6438.
  7. K. Burnett, D. J. Yoon, Y. Wu, A. Z. Li, H. Zhang, S. Lu, J. Qian, W.-K. Tseng, A. Lambert, K. Y. Leung et al., “Boreas: A multi-season autonomous driving dataset,” Intl. J. of Robot. Research, vol. 42, no. 1-2, pp. 33–42, 2023.
  8. Y. Lee, J. Choi, and H.-T. Choi, “Experimental results on ekf-based underwater localization algorithm using artificial landmark and imaging sonar,” in 2014 Oceans-St. John’s.   IEEE, 2014, pp. 1–3.
  9. G. Kim, S. Choi, and A. Kim, “Scan context++: Structural place recognition robust to rotation and lateral variations in urban environments,” IEEE Transactions on Robotics, vol. 38, no. 3, pp. 1856–1874, 2022.
  10. K. Vidanapathirana, M. Ramezani, P. Moghadam, S. Sridharan, and C. Fookes, “Logg3d-net: Locally guided global descriptor learning for 3d place recognition,” in 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 2215–2221.
  11. J. Ma, J. Zhang, J. Xu, R. Ai, W. Gu, and X. Chen, “Overlaptransformer: An efficient and yaw-angle-invariant transformer network for lidar-based place recognition,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6958–6965, 2022.
  12. S. H. Cen and P. Newman, “Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions,” in Proc. IEEE Intl. Conf. on Robot. and Automat.   IEEE, 2018, pp. 6045–6052.
  13. R. Maffei, D. Pittol, M. Mantelli, E. Prestes, and M. Kolberg, “Global localization over 2d floor plans with free-space density based on depth information,” in Proc. IEEE/RSJ Intl. Conf. on Intell. Robots and Sys.   IEEE, 2020, pp. 4609–4614.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com