Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustifying Model-Based Locomotion by Zero-order Stochastic Nonlinear Model Predictive Control with Guard Saltation Matrix (2403.14159v2)

Published 21 Mar 2024 in cs.RO and math.OC

Abstract: This paper presents a stochastic/robust nonlinear model predictive control (NMPC) to enhance the robustness of model-based legged locomotion against contact uncertainties. We integrate the contact uncertainties into the covariance propagation of stochastic/robust NMPC framework by leveraging the guard saltation matrix and an extended Kalman filter-like covariance update. We achieve fast stochastic/robust NMPC computation by utilizing the zero-order algorithm with additional improvements in computational efficiency concerning the feedback gains. We conducted numerical experiments and demonstrate that the proposed method can accurately forecast future state covariance and generate trajectories that satisfies constraints even in the presence of the contact uncertainties. Hardware experiments on the perceptive locomotion of a wheeled-legged robot were also carried out, validating the feasibility of the proposed method in a real-world system with limited on-board computation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  2. J. J. Payne, N. J. Kong, and A. M. Johnson, “The uncertainty aware Salted Kalman Filter: State estimation for hybrid systems with uncertain guards,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 8821–8828.
  3. J. Zhang and T. Ohtsuka, “Output-feedback stochastic model predictive control of chance-constrained nonlinear systems,” IET Control Theory & Applications, 2023.
  4. A. Zanelli, J. Frey, F. Messerer, and M. Diehl, “Zero-order robust nonlinear model predictive control with ellipsoidal uncertainty sets,” IFAC-PapersOnLine, vol. 54, no. 6, pp. 50–57, 2021.
  5. F. Messerer and M. Diehl, “An efficient algorithm for tube-based robust nonlinear optimal control with optimal linear feedback,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 6714–6721.
  6. A. Mesbah, “Stochastic model predictive control: An overview and perspectives for future research,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30–44, 2016.
  7. S. Xu, L. Zhu, H.-T. Zhang, and C. P. Ho, “Robust convex model predictive control for quadruped locomotion under uncertainties,” IEEE Transactions on Robotics, 2023.
  8. A. Gazar, M. Khadiv, A. Del Prete, and L. Righetti, “Multi-contact stochastic predictive control for legged robots with contact locations uncertainty,” arXiv preprint arXiv:2309.04469, 2023.
  9. N. J. Kong, C. Li, G. Council, and A. M. Johnson, “Hybrid iLQR model predictive control for contact implicit stabilization on legged robots,” IEEE Transactions on Robotics, 2023.
  10. M. Tucker, N. Csomay-Shanklin, and A. D. Ames, “Robust bipedal locomotion: Leveraging saltation matrices for gait optimization,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 12 218–12 225.
  11. N. J. Kong, J. J. Payne, J. Zhu, and A. M. Johnson, “Saltation matrices: The essential tool for linearizing hybrid dynamical systems,” arXiv preprint arXiv:2306.06862, 2023.
  12. H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal control problems,” IFAC Proceedings Volumes, vol. 17, no. 2, pp. 1603–1608, 1984.
  13. S. A. Burden, S. S. Sastry, D. E. Koditschek, and S. Revzen, “Event–selected vector field discontinuities yield piecewise–differentiable flows,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 2, pp. 1227–1267, 2016.
  14. M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart, “State estimation for legged robots-consistent fusion of leg kinematics and imu,” Robotics, vol. 17, pp. 17–24, 2013.
  15. C. Feller and C. Ebenbauer, “Relaxed logarithmic barrier function based model predictive control of linear systems,” IEEE Transactions on Automatic Control, vol. 62, no. 3, pp. 1223–1238, 2016.
  16. J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, “Model predictive control: Theory, computation, and design,” 2017.
  17. M. Diehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme for nonlinear optimization in optimal feedback control,” SIAM Journal on control and optimization, vol. 43, no. 5, pp. 1714–1736, 2005.
  18. N. Takasugi, M. Kinoshita, Y. Kamikawa, R. Tsuzaki, A. Sakamoto, T. Kai, and Y. Kawanami, “Real-time perceptive motion control using control barrier functions with analytical smoothing for six-wheeled-telescopic-legged robot Tachyon 3,” arXiv preprint arXiv:2310.11792, 2023.
  19. M. Taylor, S. Bashkirov, J. F. Rico, I. Toriyama, N. Miyada, H. Yanagisawa, and K. Ishizuka, “Learning bipedal robot locomotion from human movement,” arXiv preprint arXiv:2105.12277, 2021.
  20. J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified MPC framework for whole-body dynamic locomotion and manipulation,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4688–4695, 2021.
  21. R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive locomotion through nonlinear model-predictive control,” IEEE Transactions on Robotics, 2023.
  22. S. Katayama, N. Takasugi, M. Kaneko, and M. Kinoshita, “Versatile telescopic-wheeled-legged locomotion of Tachyon 3 via full-centroidal nonlinear model predictive control,” arXiv preprint arXiv:2312.08668, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com