Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference (2403.14138v1)

Published 21 Mar 2024 in cs.RO and cs.CV

Abstract: Robotic mapping with Bayesian Kernel Inference (BKI) has shown promise in creating semantic maps by effectively leveraging local spatial information. However, existing semantic mapping methods face challenges in constructing reliable maps in unstructured outdoor scenarios due to unreliable semantic predictions. To address this issue, we propose an evidential semantic mapping, which can enhance reliability in perceptually challenging off-road environments. We integrate Evidential Deep Learning into the semantic segmentation network to obtain the uncertainty estimate of semantic prediction. Subsequently, this semantic uncertainty is incorporated into an uncertainty-aware BKI, tailored to prioritize more confident semantic predictions when accumulating semantic information. By adaptively handling semantic uncertainties, the proposed framework constructs robust representations of the surroundings even in previously unseen environments. Comprehensive experiments across various off-road datasets demonstrate that our framework enhances accuracy and robustness, consistently outperforming existing methods in scenes with high perceptual uncertainties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. Elfes, “Using occupancy grids for mobile robot perception and navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.
  2. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An efficient probabilistic 3d mapping framework based on octrees,” Autonomous Robots, vol. 34, pp. 189–206, 2013.
  3. J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps via test-data octrees and nested bayesian fusion,” in IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1003–1010.
  4. K. Doherty, J. Wang, and B. Englot, “Bayesian generalized kernel inference for occupancy map prediction,” in IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 3118–3124.
  5. W. R. Vega-Brown, M. Doniec, and N. G. Roy, “Nonparametric bayesian inference on multivariate exponential families,” Advances in Neural Information Processing Systems (NeurIPS), vol. 27, 2014.
  6. B.-s. Kim, P. Kohli, and S. Savarese, “3d scene understanding by voxel-crf,” in IEEE/CVF International Conference on Computer Vision (CVPR), 2013, pp. 1425–1432.
  7. J. P. Valentin, S. Sengupta, J. Warrell, A. Shahrokni, and P. H. Torr, “Mesh based semantic modelling for indoor and outdoor scenes,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2067–2074.
  8. S. Sengupta and P. Sturgess, “Semantic octree: Unifying recognition, reconstruction and representation via an octree constrained higher order mrf,” in IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 1874–1879.
  9. D. Paz, H. Zhang, Q. Li, H. Xiang, and H. I. Christensen, “Probabilistic semantic mapping for urban autonomous driving applications,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 2059–2064.
  10. A. Asgharivaskasi and N. Atanasov, “Semantic octree mapping and shannon mutual information computation for robot exploration,” IEEE Transactions on Robotics, 2023.
  11. D. Morilla-Cabello, L. Mur-Labadia, R. Martinez-Cantin, and E. Montijano, “Robust fusion for bayesian semantic mapping,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2023.
  12. J. M. C. Marques, A. Zhai, S. Wang, and K. Hauser, “On the overconfidence problem in semantic 3d mapping,” arXiv preprint arXiv:2311.10018, 2023.
  13. L. Gan, R. Zhang, J. W. Grizzle, R. M. Eustice, and M. Ghaffari, “Bayesian spatial kernel smoothing for scalable dense semantic mapping,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 790–797, 2020.
  14. J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: Dense 3d semantic mapping with convolutional neural networks,” in IEEE International Conference on Robotics and automation (ICRA), 2017, pp. 4628–4635.
  15. S. Yang, Y. Huang, and S. Scherer, “Semantic 3d occupancy mapping through efficient high order crfs,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 590–597.
  16. Y. Xiang and D. Fox, “Da-rnn: Semantic mapping with data associated recurrent neural networks,” Robotics: Science and Systems (RSS), 2017.
  17. L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett, “Recurrent-octomap: Learning state-based map refinement for long-term semantic mapping with 3-d-lidar data,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3749–3756, 2018.
  18. D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, “Real-time semantic mapping for autonomous off-road navigation,” in Field and Service Robotics: Results of the 11th International Conference, 2018, pp. 335–350.
  19. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in International Conference on Machine Learning (ICML), 2017, pp. 1321–1330.
  20. P. de Jorge, R. Volpi, P. H. Torr, and G. Rogez, “Reliability in semantic segmentation: Are we on the right track?” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7173–7182.
  21. Y. Jin, D. Han, and H. Ko, “Memory-based semantic segmentation for off-road unstructured natural environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 24–31.
  22. J. Seo, S. Sim, and I. Shim, “Learning off-road terrain traversability with self-supervisions only,” IEEE Robotics and Automation Letters, 2023.
  23. Y. Deng, M. Wang, Y. Yang, D. Wang, and Y. Yue, “See-csom: Sharp-edged and efficient continuous semantic occupancy mapping for mobile robots,” IEEE Transactions on Industrial Electronics, 2023.
  24. J. Wilson, Y. Fu, J. Friesen, P. Ewen, A. Capodieci, P. Jayakumar, K. Barton, and M. Ghaffari, “Convbki: Real-time probabilistic semantic mapping network with quantifiable uncertainty,” arXiv preprint arXiv:2310.16020, 2023.
  25. M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to quantify classification uncertainty,” Advances in Neural Information Processing Systems (NeurIPS), vol. 31, 2018.
  26. P. Z. X. Li, S. Karaman, and V. Sze, “Gmmap: Memory-efficient continuous occupancy map using gaussian mixture model,” IEEE Transactions on Robotics, 2024.
  27. S. Sengupta, E. Greveson, A. Shahrokni, and P. H. Torr, “Urban 3d semantic modelling using stereo vision,” in IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 580–585.
  28. A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic segmentation and 3d reconstruction from monocular video,” in European Conference on Computer Vision (ECCV), 2014, pp. 703–718.
  29. V. Vineet, O. Miksik, M. Lidegaard, M. Nießner, S. Golodetz, V. A. Prisacariu, O. Kähler, D. W. Murray, S. Izadi, P. Pérez et al., “Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction,” in IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 75–82.
  30. L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun, “Hands-on bayesian neural networks—a tutorial for deep learning users,” IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 29–48, 2022.
  31. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in International Conference on Machine Learning (ICML), 2016, pp. 1050–1059.
  32. B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.
  33. T. Kim, J. Mun, J. Seo, B. Kim, and S. Hong, “Bridging active exploration and uncertainty-aware deployment using probabilistic ensemble neural network dynamics,” Robotics: Science and Systems (RSS), 2023.
  34. Y. Chang, F. Xue, F. Sheng, W. Liang, and A. Ming, “Fast road segmentation via uncertainty-aware symmetric network,” in IEEE International Conference on Robotics and Automation (ICRA), 2022, pp. 11 124–11 130.
  35. Z. Han, C. Zhang, H. Fu, and J. T. Zhou, “Trusted multi-view classification with dynamic evidential fusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2551–2566, 2022.
  36. K. Sirohi, S. Marvi, D. Büscher, and W. Burgard, “Uncertainty-aware panoptic segmentation,” IEEE Robotics and Automation Letters, vol. 8, no. 5, pp. 2629–2636, 2023.
  37. X. Cai, S. Ancha, L. Sharma, P. R. Osteen, B. Bucher, S. Phillips, J. Wang, M. Everett, N. Roy, and J. P. How, “Evora: Deep evidential traversability learning for risk-aware off-road autonomy,” arXiv preprint arXiv:2311.06234, 2023.
  38. A. Melkumyan and F. T. Ramos, “A sparse covariance function for exact gaussian process inference in large datasets,” in International Joint Conference on Artificial Intelligence (IJCAI), 2009.
  39. D. S. Pandey and Q. Yu, “Learn to accumulate evidence from all training samples: theory and practice,” in International Conference on Machine Learning (ICML), 2023, pp. 26 963–26 989.
  40. E. Gordon-Rodriguez, G. Loaiza-Ganem, and J. Cunningham, “The continuous categorical: a novel simplex-valued exponential family,” in International Conference on Machine Learning (ICML), 2020, pp. 3637–3647.
  41. P. Jiang, P. Osteen, M. Wigness, and S. Saripalli, “Rellis-3d dataset: Data, benchmarks and analysis,” in IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1110–1116.
  42. M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A rugd dataset for autonomous navigation and visual perception in unstructured outdoor environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5000–5007.
  43. J. Seo, T. Kim, S. Ahn, and K. Kwak, “Metaverse: Meta-learning traversability cost map for off-road navigation,” arXiv preprint arXiv:2307.13991, 2023.
  44. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com