Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Science based AI model certification for untrained operational environments with application in traffic state estimation (2403.14093v1)

Published 21 Mar 2024 in cs.CV

Abstract: The expanding role of AI in diverse engineering domains highlights the challenges associated with deploying AI models in new operational environments, involving substantial investments in data collection and model training. Rapid application of AI necessitates evaluating the feasibility of utilizing pre-trained models in unobserved operational settings with minimal or no additional data. However, interpreting the opaque nature of AI's black-box models remains a persistent challenge. Addressing this issue, this paper proposes a science-based certification methodology to assess the viability of employing pre-trained data-driven models in untrained operational environments. The methodology advocates a profound integration of domain knowledge, leveraging theoretical and analytical models from physics and related disciplines, with data-driven AI models. This novel approach introduces tools to facilitate the development of secure engineering systems, providing decision-makers with confidence in the trustworthiness and safety of AI-based models across diverse environments characterized by limited training data and dynamic, uncertain conditions. The paper demonstrates the efficacy of this methodology in real-world safety-critical scenarios, particularly in the context of traffic state estimation. Through simulation results, the study illustrates how the proposed methodology efficiently quantifies physical inconsistencies exhibited by pre-trained AI models. By utilizing analytical models, the methodology offers a means to gauge the applicability of pre-trained AI models in new operational environments. This research contributes to advancing the understanding and deployment of AI models, offering a robust certification framework that enhances confidence in their reliability and safety across a spectrum of operational conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Amin, K. Hasan, S. Zein-Sabatto, D. Chimba, I. Ahmed, and T. Islam, “An explainable ai framework for artificial intelligence of medical things,” arXiv preprint arXiv:2403.04130, 2024.
  2. A. Amin, H. Ma, M. S. Hossain, N. A. Roni, E. Haque, S. Asaduzzaman, R. Abedin, A. B. Ekram, and R. F. Akter, “Industrial product defect detection using custom u-net,” in 2022 25th International Conference on Computer and Information Technology (ICCIT), pp. 442–447, IEEE, 2022.
  3. A. Amin, H. Ma, R. Alam, N. A. Roni, M. S. Hossain, E. Haque, A. B. Ekram, R. Abedin, and S. Siddiqui, “Analysing and detecting extreme-selfie images using ensemble technique,” in 2022 25th International Conference on Computer and Information Technology (ICCIT), pp. 909–914, IEEE, 2022.
  4. Z. Ye, J. Yang, N. Zhong, X. Tu, J. Jia, and J. Wang, “Tackling environmental challenges in pollution controls using artificial intelligence: A review,” Science of The Total Environment, vol. 699, p. 134279, 2020.
  5. K. Yetilmezsoy, B. Özkaya, and M. Çakmakci, “Artificial intelligence-based prediction models for environmental engineering,” Neural Network World, vol. 21, pp. 193–218, 2011.
  6. T. Zhang, Q. Li, C.-S. Zhang, H. Liang, P. Li, T. M. Wang, S. Li, Y. Zhu, and C. Wu, “Current trends in the development of intelligent unmanned autonomous systems,” Frontiers of Information Technology & Electronic Engineering, vol. 18, pp. 68 – 85, 2017.
  7. F. Xing, G. Peng, B. Zhang, S. Zuo, J. Tang, and S. Li, “Driving innovation with the application of industrial ai in the r&d domain,” in Distributed, Ambient and Pervasive Interactions: 8th International Conference, DAPI 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings 22, pp. 244–255, Springer, 2020.
  8. S. R. Islam, W. Eberle, S. Bundy, and S. K. Ghafoor, “Infusing domain knowledge in ai-based ”black box” models for better explainability with application in bankruptcy prediction,” 2019.
  9. L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big data: Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–361, 2017.
  10. A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Machine learning with big data: Challenges and approaches,” IEEE Access, vol. 5, pp. 7776–7797, 2017.
  11. S. Genovesi and J. Mönig, “Acknowledging sustainability in the framework of ethical certification for ai,” Sustainability, vol. 14, p. 4157, 03 2022.
  12. P. M. Winter, S. Eder, J. Weissenböck, C. Schwald, T. Doms, T. Vogt, S. Hochreiter, and B. Nessler, “Trusted artificial intelligence: Towards certification of machine learning applications,” arXiv preprint arXiv:2103.16910, 2021.
  13. A. Gupta, C. Lanteigne, and S. Kingsley, “Secure: A social and environmental certificate for ai systems,” 2020.
  14. F. Tambon, G. Laberge, L. An, A. Nikanjam, P. S. N. Mindom, Y. Pequignot, F. Khomh, G. Antoniol, E. Merlo, and F. Laviolette, “How to certify machine learning based safety-critical systems? a systematic literature review,” Automated Software Engineering, vol. 29, no. 2, p. 38, 2022.
  15. G. Bakirtzis, S. Carr, D. Danks, and U. Topcu, “Dynamic certification for autonomous systems,” arXiv preprint arXiv:2203.10950, 2022.
  16. J. Zhang and Z.-m. Zhang, “Ethics and governance of trustworthy medical artificial intelligence,” BMC Medical Informatics and Decision Making, vol. 23, no. 1, p. 7, 2023.
  17. H. Azzam, F. Beaven, L. Gill, and M. Wallace, “A route for qualifying/certifying an affordable structural prognostic health management (sphm) system,” in 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), vol. 6, pp. 3791–3808, IEEE, 2004.
  18. S. Yanisky-Ravid and S. K. Hallisey, “Equality and privacy by design: A new model of artificial intelligence data transparency via auditing, certification, and safe harbor regimes,” Fordham Urb. LJ, vol. 46, p. 428, 2019.
  19. M. M. Kuglitsch, I. Pelivan, S. Ceola, M. Menon, and E. Xoplaki, “Facilitating adoption of ai in natural disaster management through collaboration,” Nature communications, vol. 13, no. 1, p. 1579, 2022.
  20. M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence, machine learning and deep learning in advanced robotics, a review,” Cognitive Robotics, vol. 3, pp. 54–70, 2023.
  21. C. Berghoff, M. Neu, and A. von Twickel, “Vulnerabilities of connectionist ai applications: evaluation and defense,” Frontiers in big Data, vol. 3, p. 23, 2020.
  22. J.-H. Syu, J. C.-W. Lin, and G. Srivastava, “Ai-based electricity grid management for sustainability, reliability, and security,” IEEE Consumer Electronics Magazine, 2023.
  23. C. Budnik, M. Gario, G. Markov, and Z. Wang, “Guided test case generation through ai enabled output space exploration,” in Proceedings of the 13th International Workshop on Automation of Software Test, pp. 53–56, 2018.
  24. S. M. Hussain, D. Buongiorno, N. Altini, F. Berloco, B. Prencipe, M. Moschetta, V. Bevilacqua, and A. Brunetti, “Shape-based breast lesion classification using digital tomosynthesis images: The role of explainable artificial intelligence,” Applied Sciences, vol. 12, no. 12, p. 6230, 2022.
  25. Y. Liang, Z. Cui, Y. Tian, H. Chen, and Y. Wang, “A deep generative adversarial architecture for network-wide spatial-temporal traffic-state estimation,” Transportation Research Record, vol. 2672, no. 45, pp. 87–105, 2018.
  26. J. Zhou, J. Tian, R. Wang, Y. Wu, W. Xiao, and L. He, “Sentix: A sentiment-aware pre-trained model for cross-domain sentiment analysis,” in Proceedings of the 28th international conference on computational linguistics, pp. 568–579, 2020.
  27. P. Wang, J. Lai, Z. Huang, Q. Tan, and T. Lin, “Estimating traffic flow in large road networks based on multi-source traffic data,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 5672–5683, 2020.
  28. M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
  29. Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction with big data: A deep learning approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.
  30. M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial differential equations,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 932–955, 2018.
  31. A. J. Huang and S. Agarwal, “On the limitations of physics-informed deep learning: Illustrations using first-order hyperbolic conservation law-based traffic flow models,” IEEE Open Journal of Intelligent Transportation Systems, vol. 4, pp. 279–293, 2023.
  32. H. Park and A. Haghani, “Real-time prediction of secondary incident occurrences using vehicle probe data,” Transportation Research Part C: Emerging Technologies, vol. 70, pp. 69–85, 2016.
  33. B. D. Greenshields, J. Bibbins, W. Channing, and H. Miller, “A study of traffic capacity,” in Highway research board proceedings, vol. 14, pp. 448–477, Washington, DC, 1935.
  34. J. Xing, W. Wu, Q. Cheng, and R. Liu, “Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights,” Physica A: Statistical Mechanics and its Applications, vol. 595, p. 127079, 2022.
  35. A. K. Azad and M. S. Islam, “Traffic flow prediction model using google map and lstm deep learning,” in 2021 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 1–5, 2021.
  36. Z. Zheng, Y. Yang, J. Liu, H.-N. Dai, and Y. Zhang, “Deep and embedded learning approach for traffic flow prediction in urban informatics,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3927–3939, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Daryl Mupupuni (2 papers)
  2. Anupama Guntu (2 papers)
  3. Liang Hong (67 papers)
  4. Kamrul Hasan (23 papers)
  5. Leehyun Keel (2 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com