Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$-bounds in Safarov pseudo-differential calculus on manifolds with bounded geometry (2403.13920v1)

Published 20 Mar 2024 in math.AP

Abstract: Given a smooth complete Riemannian manifold with bounded geometry $(M,g)$ and a linear connection $\nabla$ on it (not necessarily a metric one), we prove the $Lp$-boundedness of operators belonging to the global pseudo-differential classes $\Psi_{\rho, \delta}m\left(\Omega\kappa, \nabla, \tau\right)$ constructed by Safarov. Our result recovers classical Fefferman's theorem, and extends it to the following two situations: $\rho>1/3$ and $\nabla$ symmetric; and $\nabla$ flat with any values of $\rho$ and $\delta$. Moreover, as a consequence of our main result, we obtain boundedness on Sobolev and Besov spaces and some $Lp-Lq$ boundedness. Different examples and applications are presented.

Summary

We haven't generated a summary for this paper yet.