Higher memory effects and the post-Newtonian calculation of their gravitational-wave signals (2403.13907v2)
Abstract: A new hierarchy of lasting gravitational-wave effects (the higher memory effects) was recently identified in asymptotically flat spacetimes, with the better-known displacement, spin, and center-of-mass memory effects included as the lowest two orders in the set of these effects. These gravitational-wave observables are determined by a set of temporal moments of the news tensor, which describes gravitational radiation from an isolated source. The moments of the news can be expressed in terms of changes in charge-like expressions and integrals over retarded time of flux-like terms, some of which vanish in the absence of radiation. In this paper, we compute expressions for the flux-like contributions to the moments of the news in terms of a set of multipoles that characterize the gravitational-wave strain. We also identify a part of the strain that gives rise to these moments of the news. In the context of post-Newtonian theory, we show that the strain related to the moments of the news is responsible for the many nonlinear, instantaneous terms and "memory" terms that appear in the post-Newtonian expressions for the radiative multipole moments of the strain. We also apply our results to compute the leading post-Newtonian expressions for the moments of the news and the corresponding strains that are generated during the inspiral of compact binary sources. These results provide a new viewpoint on the waveforms computed from the multipolar post-Minkowski formalism, and they could be used to assess the detection prospects of this new class of higher memory effects.
- Bondi H, van der Burg M G J and Metzner A W K 1962 Proc. Roy. Soc. Lond. A 269 21–52
- Sachs R 1962 Phys. Rev. 128 2851–2864
- Bieri L and Garfinkle D 2014 Phys. Rev. D 89 084039 (Preprint 1312.6871)
- Zel’dovich Y B and Polnarev A G 1974 Sov. Astron. 18 17
- Braginsky V B and Grishchuk L P 1985 Sov. Phys. JETP 62 427–430
- Christodoulou D 1991 Phys. Rev. Lett. 67 1486–1489
- Blanchet L and Damour T 1992 Phys. Rev. D 46 4304–4319
- Geroch R P 1977 Asymptotic Structure of Space-Time Asymptotic Structure of Space-Time ed Esposito F P and Witten L (Boston, MA: Springer US) pp 1–105
- Wald R M and Zoupas A 2000 Phys. Rev. D 61 084027 (Preprint gr-qc/9911095)
- Strominger A and Zhiboedov A 2016 J. High Energy Phys. 01 086 (Preprint 1411.5745)
- Ashtekar A 2014 (Preprint 1409.1800)
- Flanagan E E and Nichols D A 2017 Phys. Rev. D 95 044002 (Preprint 1510.03386)
- Pasterski S, Strominger A and Zhiboedov A 2016 J. High Energy Phys. 12 053 (Preprint 1502.06120)
- Nichols D A 2017 Phys. Rev. D 95 084048 (Preprint 1702.03300)
- Nichols D A 2018 Phys. Rev. D 98 064032 (Preprint 1807.08767)
- Barnich G and Troessaert C 2010 Phys. Rev. Lett. 105 111103 (Preprint 0909.2617)
- Barnich G and Troessaert C 2010 J. High Energy Phys. 05 062 (Preprint 1001.1541)
- Campiglia M and Laddha A 2014 Phys. Rev. D 90 124028 (Preprint 1408.2228)
- Campiglia M and Laddha A 2015 J. High Energy Phys. 04 076 (Preprint 1502.02318)
- Grant A M and Nichols D A 2022 Phys. Rev. D 105 024056 [Erratum: Phys.Rev.D 107, 109902 (2023)] (Preprint 2109.03832)
- Compère G, Oliveri R and Seraj A 2022 J. High Energy Phys. 11 001 (Preprint 2206.12597)
- Grant A M 2023 (Preprint 2401.00047)
- Geiller M 2024 (Preprint 2403.05195)
- Donnay L 2023 (Preprint 2310.12922)
- Freidel L, Pranzetti D and Raclariu A M 2022 Phys. Rev. D 106 086013 (Preprint 2112.15573)
- Blanchet L 2014 Living Rev. Rel. 17 2 (Preprint 1310.1528)
- Favata M 2009 Phys. Rev. D 80 024002 (Preprint 0812.0069)
- Grant A M and Mitman K 2023 (Preprint 2312.02295)
- Mädler T and Winicour J 2016 Scholarpedia 11 33528 (Preprint 1609.01731)
- Compère G, Oliveri R and Seraj A 2020 J. High Energy Phys. 10 116 (Preprint 1912.03164)
- Elhashash A and Nichols D A 2021 Phys. Rev. D 104 024020 (Preprint 2101.12228)
- Grant A M, Prabhu K and Shehzad I 2022 Class. Quant. Grav. 39 085002 (Preprint 2105.05919)
- Satishchandran G and Wald R M 2019 Phys. Rev. D 99 084007 (Preprint 1901.05942)
- Burko L M and Khanna G 2020 Phys. Rev. D 102 084035 (Preprint 2007.12545)
- Favata M 2009 Astrophys. J. Lett. 696 L159–L162 (Preprint 0902.3660)
- Mitman K et al. 2021 Phys. Rev. D 103 024031 (Preprint 2011.01309)
- Newman E T and Penrose R 1968 Proc. Roy. Soc. Lond. A 305 175–204
- Thorne K S 1980 Rev. Mod. Phys. 52 299–339
- Blanchet L and Damour T 1988 Phys. Rev. D 37 1410
- Penrose R 1963 Phys. Rev. Lett. 10 66–68
- Wiseman A G and Will C M 1991 Phys. Rev. D 44 R2945–R2949
- Grant A M and Nichols D A 2023 Phys. Rev. D 107 064056 [Erratum: Phys.Rev.D 108, 029901 (2023)] (Preprint 2210.16266)
- Boersma O M, Nichols D A and Schmidt P 2020 Phys. Rev. D 101 083026 (Preprint 2002.01821)
- Abbott B P et al. (LIGO Scientific, Virgo) 2017 Phys. Rev. Lett. 119 161101 (Preprint 1710.05832)
- Hübner M, Lasky P and Thrane E 2021 Phys. Rev. D 104 023004 (Preprint 2105.02879)
- Cahillane C et al. (LIGO Scientific) 2017 Phys. Rev. D 96 102001 (Preprint 1708.03023)
- Tahura S, Yagi K and Carson Z 2019 Phys. Rev. D 100 104001 (Preprint 1907.10059)
- Geroch R P, Held A and Penrose R 1973 J. Math. Phys. 14 874–881
- Penrose R and Rindler W 1987 Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields Cambridge Monographs on Mathematical Physics (Cambridge University Press) ISBN 9780521337076