A Noisy Approach to Intrinsically Mixed-State Topological Order (2403.13879v3)
Abstract: We propose a general framework for studying two-dimensional (2D) topologically ordered states subject to local correlated errors and show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO) -- topological order which is not expected to occur in the ground state of 2D local gapped Hamiltonians. Specifically, we show that decoherence, previously interpreted as anyon condensation in a doubled Hilbert space, is more naturally phrased as, and provides a physical mechanism for, ``gauging out" anyons in the original Hilbert space. We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries. This framework lays bare a striking connection between the decohered density matrix and topological subsystem codes, which can appear as anomalous surface states of 3D topological orders. Through a series of examples, we show that the decohered state can display a classical memory, encode logical qubits (i.e., exhibit a quantum memory), and even host chiral or non-modular topological order. We argue that a partial classification of imTO is given in terms of non-modular braided fusion categories.
- A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
- S. Bravyi, M. B. Hastings, and S. Michalakis, Topological quantum order: Stability under local perturbations, Journal of Mathematical Physics 51, 093512 (2010).
- S. Bravyi and M. B. Hastings, A Short Proof of Stability of Topological Order under Local Perturbations, Communications in Mathematical Physics 307, 609 (2011).
- S. Michalakis and J. P. Zwolak, Stability of Frustration-Free Hamiltonians, Communications in Mathematical Physics 322, 277 (2013).
- M. B. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett. 107, 210501 (2011).
- T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Phys. Rev. Lett. 125, 116801 (2020).
- A. Coser and D. Pérez-García, Classification of phases for mixed states via fast dissipative evolution, Quantum 3, 174 (2019).
- Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv e-prints 10.48550/arXiv.2310.07286 (2023a), arXiv:2310.07286 [quant-ph] .
- Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv e-prints 10.48550/arXiv.2309.11879 (2023b), arXiv:2309.11879 [quant-ph] .
- S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state Quantum Phases: Renormalization and Quantum Error Correction, arXiv e-prints 10.48550/arXiv.2310.08639 (2023), arXiv:2310.08639 [quant-ph] .
- Z. Li and R. S. K. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv e-prints , arXiv:2402.09516 (2024), arXiv:2402.09516 [quant-ph] .
- A. Lavasani and S. Vijay, The Stability of Gapped Quantum Matter and Error-Correction with Adiabatic Noise, arXiv e-prints 10.48550/arXiv.2402.14906 (2024), arXiv:2402.14906 [cond-mat.str-el] .
- C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
- R. Ma and C. Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
- J.-H. Zhang, Y. Qi, and Z. Bi, Strange Correlation Function for Average Symmetry-Protected Topological Phases, arXiv e-prints 10.48550/arXiv.2210.17485 (2022), arXiv:2210.17485 [cond-mat.str-el] .
- J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv e-prints 10.48550/arXiv.2210.16323 (2022), arXiv:2210.16323 [cond-mat.str-el] .
- Z. Wang, Z. Wu, and Z. Wang, Intrinsic Mixed-state Topological Order Without Quantum Memory, arXiv e-prints , arXiv:2307.13758 (2023), arXiv:2307.13758 [quant-ph] .
- H. Bombin, M. Kargarian, and M. A. Martin-Delgado, Interacting anyonic fermions in a two-body color code model, Phys. Rev. B 80, 075111 (2009).
- H. Bombin, Topological subsystem codes, Phys. Rev. A 81, 032301 (2010).
- H. Bombin, G. Duclos-Cianci, and D. Poulin, Universal topological phase of two-dimensional stabilizer codes, New Journal of Physics 14, 073048 (2012).
- H. Bombín, Structure of 2D Topological Stabilizer Codes, Communications in Mathematical Physics 327, 387 (2014).
- X. Chen, M. Hermele, and D. T. Stephen, Sequential Adiabatic Generation of Chiral Topological States, arXiv e-prints 10.48550/arXiv.2402.03433 (2024), arXiv:2402.03433 [cond-mat.str-el] .
- F. J. Burnell, Anyon Condensation and Its Applications, Annual Review of Condensed Matter Physics 9, 307 (2018).
- K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Frontiers of Physics 7, 150 (2012).
- P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys. 6, 039 (2019).
- A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nuclear Physics B 845, 393 (2011), arXiv:1008.0654 [hep-th] .
- A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Reports on Mathematical Physics 3, 275 (1972).
- M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications 10, 285 (1975).
- B. Yoshida, Feasibility of self-correcting quantum memory and thermal stability of topological order, Annals of Physics 326, 2566 (2011).
- D. Poulin, R. G. Melko, and M. B. Hastings, Self-correction in wegner’s three-dimensional ising lattice gauge theory, Phys. Rev. B 99, 094103 (2019).
- P. Zanardi and S. Lloyd, Topological Protection and Quantum Noiseless Subsystems, Phys. Rev. Lett. 90, 067902 (2003).
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-Free Subspaces for Quantum Computation, Phys. Rev. Lett. 81, 2594 (1998).
- P. H. Bonderson, Non-Abelian anyons and interferometry (California Institute of Technology, 2012).
- C. Castelnovo and C. Chamon, Topological order and topological entropy in classical systems, Phys. Rev. B 76, 174416 (2007).
- J. Wildeboer, T. Iadecola, and D. J. Williamson, Symmetry-protected infinite-temperature quantum memory from subsystem codes, PRX Quantum 3, 020330 (2022).
- M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).
- F. J. Burnell, S. H. Simon, and J. K. Slingerland, Condensation of achiral simple currents in topological lattice models: Hamiltonian study of topological symmetry breaking, Phys. Rev. B 84, 125434 (2011).
- F. J. Burnell, S. H. Simon, and J. K. Slingerland, Phase transitions in topological lattice models via topological symmetry breaking, New Journal of Physics 14, 015004 (2012).
- M. Mueger, On the Structure of Modular Categories, arXiv Mathematics e-prints , math/0201017 (2002), arXiv:math/0201017 [math.CT] .
- M. Shokrian Zini and Z. Wang, Mixed-state TQFTs, arXiv e-prints , arXiv:2110.13946 (2021), arXiv:2110.13946 [math.QA] .
- A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
- K. Hwang, Mixed-State Quantum Spin Liquids and Dynamical Anyon Condensations in Kitaev Lindbladians, arXiv e-prints , arXiv:2305.09197 (2023), arXiv:2305.09197 [cond-mat.str-el] .
- J. McGreevy, Generalized symmetries in condensed matter, Annual Review of Condensed Matter Physics 14, 57–82 (2023).
- B. Buča and T. Prosen, A note on symmetry reductions of the lindblad equation: transport in constrained open spin chains, New Journal of Physics 14, 073007 (2012).
- V. V. Albert and L. Jiang, Symmetries and conserved quantities in lindblad master equations, Phys. Rev. A 89, 022118 (2014).
- M. Hermanns and S. Trebst, Renyi entropies for classical string-net models, Phys. Rev. B 89, 205107 (2014).
- A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996), arXiv:quant-ph/9604005 .
- J. Eisert and M. B. Plenio, A comparison of entanglement measures, Journal of Modern Optics 46, 145 (1999).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
- A. Kitaev and J. Preskill, Topological entanglement entropy, Physical Review Letters 96, 10.1103/physrevlett.96.110404 (2006).
- M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
- Y. A. Lee and G. Vidal, Entanglement negativity and topological order, Phys. Rev. A 88, 042318 (2013).
- C. Castelnovo, Negativity and topological order in the toric code, Phys. Rev. A 88, 042319 (2013).
- X. Wen, P.-Y. Chang, and S. Ryu, Topological entanglement negativity in chern-simons theories, Journal of High Energy Physics 2016 (2016b).
- O. Hart and C. Castelnovo, Entanglement negativity and sudden death in the toric code at finite temperature, Phys. Rev. B 97, 144410 (2018).
- Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors (2024), arXiv:2403.06553 [quant-ph] .
- R. Fan, From entanglement generated dynamics to the gravitational anomaly and chiral central charge, Phys. Rev. Lett. 129, 260403 (2022).
- R. Sohal and S. Ryu, Entanglement in tripartitions of topological orders: A diagrammatic approach, Phys. Rev. B 108, 045104 (2023).
- L. A. Lessa, M. Cheng, and C. Wang, Mixed-state quantum anomaly and multipartite entanglement, arXiv e-prints 10.48550/arXiv.2401.17357 (2024), arXiv:2401.17357 [cond-mat.str-el] .
- L. Fidkowski, J. Haah, and M. B. Hastings, Gravitational anomaly of (3+1)31(3+1)( 3 + 1 )-dimensional 𝕫2subscript𝕫2{\mathbb{z}}_{2}blackboard_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT toric code with fermionic charges and fermionic loop self-statistics, Phys. Rev. B 106, 165135 (2022).
- Y.-A. Chen and P.-S. Hsin, Exactly solvable lattice Hamiltonians and gravitational anomalies, SciPost Phys. 14, 089 (2023).
- T. Ellison and M. Cheng, Towards a classification of mixed state topological orders in two dimensions, in preparation.