Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Noisy Approach to Intrinsically Mixed-State Topological Order (2403.13879v3)

Published 20 Mar 2024 in cond-mat.str-el, hep-th, and quant-ph

Abstract: We propose a general framework for studying two-dimensional (2D) topologically ordered states subject to local correlated errors and show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO) -- topological order which is not expected to occur in the ground state of 2D local gapped Hamiltonians. Specifically, we show that decoherence, previously interpreted as anyon condensation in a doubled Hilbert space, is more naturally phrased as, and provides a physical mechanism for, ``gauging out" anyons in the original Hilbert space. We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries. This framework lays bare a striking connection between the decohered density matrix and topological subsystem codes, which can appear as anomalous surface states of 3D topological orders. Through a series of examples, we show that the decohered state can display a classical memory, encode logical qubits (i.e., exhibit a quantum memory), and even host chiral or non-modular topological order. We argue that a partial classification of imTO is given in terms of non-modular braided fusion categories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2 (2003).
  2. S. Bravyi, M. B. Hastings, and S. Michalakis, Topological quantum order: Stability under local perturbations, Journal of Mathematical Physics 51, 093512 (2010).
  3. S. Bravyi and M. B. Hastings, A Short Proof of Stability of Topological Order under Local Perturbations, Communications in Mathematical Physics 307, 609 (2011).
  4. S. Michalakis and J. P. Zwolak, Stability of Frustration-Free Hamiltonians, Communications in Mathematical Physics 322, 277 (2013).
  5. M. B. Hastings, Topological order at nonzero temperature, Phys. Rev. Lett. 107, 210501 (2011).
  6. T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Phys. Rev. Lett. 125, 116801 (2020).
  7. A. Coser and D. Pérez-García, Classification of phases for mixed states via fast dissipative evolution, Quantum 3, 174 (2019).
  8. Y.-H. Chen and T. Grover, Symmetry-enforced many-body separability transitions, arXiv e-prints 10.48550/arXiv.2310.07286 (2023a), arXiv:2310.07286 [quant-ph] .
  9. Y.-H. Chen and T. Grover, Separability transitions in topological states induced by local decoherence, arXiv e-prints 10.48550/arXiv.2309.11879 (2023b), arXiv:2309.11879 [quant-ph] .
  10. S. Sang, Y. Zou, and T. H. Hsieh, Mixed-state Quantum Phases: Renormalization and Quantum Error Correction, arXiv e-prints 10.48550/arXiv.2310.08639 (2023), arXiv:2310.08639 [quant-ph] .
  11. Z. Li and R. S. K. Mong, Replica topological order in quantum mixed states and quantum error correction, arXiv e-prints , arXiv:2402.09516 (2024), arXiv:2402.09516 [quant-ph] .
  12. A. Lavasani and S. Vijay, The Stability of Gapped Quantum Matter and Error-Correction with Adiabatic Noise, arXiv e-prints 10.48550/arXiv.2402.14906 (2024), arXiv:2402.14906 [cond-mat.str-el] .
  13. C. de Groot, A. Turzillo, and N. Schuch, Symmetry Protected Topological Order in Open Quantum Systems, Quantum 6, 856 (2022).
  14. R. Ma and C. Wang, Average symmetry-protected topological phases, Phys. Rev. X 13, 031016 (2023).
  15. J.-H. Zhang, Y. Qi, and Z. Bi, Strange Correlation Function for Average Symmetry-Protected Topological Phases, arXiv e-prints 10.48550/arXiv.2210.17485 (2022), arXiv:2210.17485 [cond-mat.str-el] .
  16. J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence, arXiv e-prints 10.48550/arXiv.2210.16323 (2022), arXiv:2210.16323 [cond-mat.str-el] .
  17. Z. Wang, Z. Wu, and Z. Wang, Intrinsic Mixed-state Topological Order Without Quantum Memory, arXiv e-prints , arXiv:2307.13758 (2023), arXiv:2307.13758 [quant-ph] .
  18. H. Bombin, M. Kargarian, and M. A. Martin-Delgado, Interacting anyonic fermions in a two-body color code model, Phys. Rev. B 80, 075111 (2009).
  19. H. Bombin, Topological subsystem codes, Phys. Rev. A 81, 032301 (2010).
  20. H. Bombin, G. Duclos-Cianci, and D. Poulin, Universal topological phase of two-dimensional stabilizer codes, New Journal of Physics 14, 073048 (2012).
  21. H. Bombín, Structure of 2D Topological Stabilizer Codes, Communications in Mathematical Physics 327, 387 (2014).
  22. X. Chen, M. Hermele, and D. T. Stephen, Sequential Adiabatic Generation of Chiral Topological States, arXiv e-prints 10.48550/arXiv.2402.03433 (2024), arXiv:2402.03433 [cond-mat.str-el] .
  23. F. J. Burnell, Anyon Condensation and Its Applications, Annual Review of Condensed Matter Physics 9, 307 (2018).
  24. K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Frontiers of Physics 7, 150 (2012).
  25. P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys. 6, 039 (2019).
  26. A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory, Nuclear Physics B 845, 393 (2011), arXiv:1008.0654 [hep-th] .
  27. A. Jamiołkowski, Linear transformations which preserve trace and positive semidefiniteness of operators, Reports on Mathematical Physics 3, 275 (1972).
  28. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications 10, 285 (1975).
  29. B. Yoshida, Feasibility of self-correcting quantum memory and thermal stability of topological order, Annals of Physics 326, 2566 (2011).
  30. D. Poulin, R. G. Melko, and M. B. Hastings, Self-correction in wegner’s three-dimensional ising lattice gauge theory, Phys. Rev. B 99, 094103 (2019).
  31. P. Zanardi and S. Lloyd, Topological Protection and Quantum Noiseless Subsystems, Phys. Rev. Lett.  90, 067902 (2003).
  32. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-Free Subspaces for Quantum Computation, Phys. Rev. Lett.  81, 2594 (1998).
  33. P. H. Bonderson, Non-Abelian anyons and interferometry (California Institute of Technology, 2012).
  34. C. Castelnovo and C. Chamon, Topological order and topological entropy in classical systems, Phys. Rev. B 76, 174416 (2007).
  35. J. Wildeboer, T. Iadecola, and D. J. Williamson, Symmetry-protected infinite-temperature quantum memory from subsystem codes, PRX Quantum 3, 020330 (2022).
  36. M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005).
  37. F. J. Burnell, S. H. Simon, and J. K. Slingerland, Condensation of achiral simple currents in topological lattice models: Hamiltonian study of topological symmetry breaking, Phys. Rev. B 84, 125434 (2011).
  38. F. J. Burnell, S. H. Simon, and J. K. Slingerland, Phase transitions in topological lattice models via topological symmetry breaking, New Journal of Physics 14, 015004 (2012).
  39. M. Mueger, On the Structure of Modular Categories, arXiv Mathematics e-prints , math/0201017 (2002), arXiv:math/0201017 [math.CT] .
  40. M. Shokrian Zini and Z. Wang, Mixed-state TQFTs, arXiv e-prints , arXiv:2110.13946 (2021), arXiv:2110.13946 [math.QA] .
  41. A. Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321, 2 (2006).
  42. K. Hwang, Mixed-State Quantum Spin Liquids and Dynamical Anyon Condensations in Kitaev Lindbladians, arXiv e-prints , arXiv:2305.09197 (2023), arXiv:2305.09197 [cond-mat.str-el] .
  43. J. McGreevy, Generalized symmetries in condensed matter, Annual Review of Condensed Matter Physics 14, 57–82 (2023).
  44. B. Buča and T. Prosen, A note on symmetry reductions of the lindblad equation: transport in constrained open spin chains, New Journal of Physics 14, 073007 (2012).
  45. V. V. Albert and L. Jiang, Symmetries and conserved quantities in lindblad master equations, Phys. Rev. A 89, 022118 (2014).
  46. M. Hermanns and S. Trebst, Renyi entropies for classical string-net models, Phys. Rev. B 89, 205107 (2014).
  47. A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996), arXiv:quant-ph/9604005 .
  48. J. Eisert and M. B. Plenio, A comparison of entanglement measures, Journal of Modern Optics 46, 145 (1999).
  49. G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
  50. M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
  51. A. Kitaev and J. Preskill, Topological entanglement entropy, Physical Review Letters 96, 10.1103/physrevlett.96.110404 (2006).
  52. M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
  53. Y. A. Lee and G. Vidal, Entanglement negativity and topological order, Phys. Rev. A 88, 042318 (2013).
  54. C. Castelnovo, Negativity and topological order in the toric code, Phys. Rev. A 88, 042319 (2013).
  55. X. Wen, P.-Y. Chang, and S. Ryu, Topological entanglement negativity in chern-simons theories, Journal of High Energy Physics 2016 (2016b).
  56. O. Hart and C. Castelnovo, Entanglement negativity and sudden death in the toric code at finite temperature, Phys. Rev. B 97, 144410 (2018).
  57. Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors (2024), arXiv:2403.06553 [quant-ph] .
  58. R. Fan, From entanglement generated dynamics to the gravitational anomaly and chiral central charge, Phys. Rev. Lett. 129, 260403 (2022).
  59. R. Sohal and S. Ryu, Entanglement in tripartitions of topological orders: A diagrammatic approach, Phys. Rev. B 108, 045104 (2023).
  60. L. A. Lessa, M. Cheng, and C. Wang, Mixed-state quantum anomaly and multipartite entanglement, arXiv e-prints 10.48550/arXiv.2401.17357 (2024), arXiv:2401.17357 [cond-mat.str-el] .
  61. L. Fidkowski, J. Haah, and M. B. Hastings, Gravitational anomaly of (3+1)31(3+1)( 3 + 1 )-dimensional 𝕫2subscript𝕫2{\mathbb{z}}_{2}blackboard_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT toric code with fermionic charges and fermionic loop self-statistics, Phys. Rev. B 106, 165135 (2022).
  62. Y.-A. Chen and P.-S. Hsin, Exactly solvable lattice Hamiltonians and gravitational anomalies, SciPost Phys. 14, 089 (2023).
  63. T. Ellison and M. Cheng, Towards a classification of mixed state topological orders in two dimensions, in preparation.
Citations (29)

Summary

We haven't generated a summary for this paper yet.