Quantum-limited superresolution of two arbitrary incoherent point sources: beating the resurgence of Rayleigh's curse (2403.13752v2)
Abstract: Abstract Superresolution has been demonstrated to overcome the limitation of the Rayleigh's criterion and achieve significant improvement of the precision in resolving the separation of two incoherent optical point sources. However, in recent years, it was found that if the photon numbers of the two incoherent optical sources are unknown, the precision of superresolution vanishes when the two photon numbers are actually different. In this work, we first analyze the estimation precision of the separation between two incoherent optical sources with the same point-spread functions in detail, and show that when the photon numbers of the two optical sources are different but sufficiently close, the superresolution can still realized but with different precisions. We find the condition on how close the photon numbers of two optical sources need to be to realize the superresolution, and derive the precision of superresolution in different regimes of the photon number difference. We further consider the superresolution for two incoherent optical sources with different point-spread functions, and show that the competition between the difference of photon numbers, the difference of the two point-spread functions and the separation of the two optical sources determines the precision of superresolution. The results exhibit precision limits distinct from the case of two point sources with identical point-spread functions and equal photon numbers, and extend the realizable regimes of the quantum superresolution technique. The results are finally illustrated by Gaussian point-spread functions.
- C. K. Rushforth and R. W. Harris, Journal of the Optical Society of America 58, 539 (1968).
- C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, Physical Review Letters 109, 123601 (2012).
- W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
- W. R. Zipfel, R. M. Williams, and W. W. Webb, Nature Biotechnology 21, 1369 (2003).
- F. Helmchen and W. Denk, Nature Methods 2, 932 (2005).
- Z. Jacob, L. V. Alekseyev, and E. Narimanov, Optics Express 14, 8247 (2006).
- Z. Liao, M. Al-Amri, and M. Suhail Zubairy, Physical Review Letters 105, 183601 (2010).
- L. Rayleigh, Monthly Notices of the Royal Astronomical Society 40, 254 (1880).
- C. W. Helstrom, Journal of Statistical Physics 1, 231 (1969).
- V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
- M. Tsang, R. Nair, and X.-M. Lu, Physical Review X 6, 031033 (2016).
- M. Tsang, Contemporary Physics 60, 279 (2019a), 1906.02064 .
- M. Tsang, Physical Review Research 1, 033006 (2019b), 1906.04578 .
- S. Z. Ang, R. Nair, and M. Tsang, Physical Review A 95, 063847 (2017).
- S. Prasad, Physical Review A 102, 033726 (2020a).
- S. Prasad, Physical Review A 102, 063719 (2020b), 2008.09946 .
- Z. Yu and S. Prasad, Physical Review Letters 121, 180504 (2018).
- S. Prasad, Physica Scripta 95, 054004 (2020c).
- S. Zhou and L. Jiang, Physical Review A 99, 013808 (2019).
- E. Bisketzi, D. Branford, and A. Datta, New Journal of Physics 21, 123032 (2019).
- C. Lupo and S. Pirandola, Physical Review Letters 117, 190802 (2016).
- R. Nair and M. Tsang, Physical Review Letters 117, 190801 (2016).
- Y. Wang, Y. Zhang, and V. O. Lorenz, Physical Review A 104, 022613 (2021a).
- P. Ben-Abdallah, Physical Review Letters 123, 264301 (2019).
- E. F. Matlin and L. J. Zipp, Scientific Reports 12, 2810 (2022).
- D. Xie, C. Xu, and A. M. Wang, Results in Physics 42, 105957 (2022).
- M. Gessner, C. Fabre, and N. Treps, Physical Review Letters 125, 100501 (2020).
- M. Tsang, Physical Review A 107, 012611 (2023), 2209.06104 .
- W. Górecki, A. Riccardi, and L. Maccone, Physical Review Letters 129, 240503 (2022).
- S. Prasad and Z. Yu, Physical Review A 99, 022116 (2019).
- M. R. Grace and S. Guha, Physical Review Letters 129, 180502 (2022).
- M. Mazelanik, A. Leszczyński, and M. Parniak, Nature Communications 13, 691 (2022).
- A. M. Zheltikov, Journal of Raman Spectroscopy 53, 1094 (2022).
- E. Köse and D. Braun, Physical Review A 107, 032607 (2023).
- C. Cremer and B. R. Masters, The European Physical Journal H 38, 281 (2013).
- T. Z. Sheng, K. Durak, and A. Ling, Fault-tolerant and finite-error localization for point emitters within the diffraction limit (2016), arxiv:arXiv:1605.07297 .
- C. Fabre and N. Treps, Reviews of Modern Physics 92, 035005 (2020), 1912.09321 .
- C. Lupo, Z. Huang, and P. Kok, Physical Review Letters 124, 080503 (2020).
- Z. Huang and C. Lupo, Physical Review Letters 127, 130502 (2021).
- W. Górecki and R. Demkowicz-Dobrzański, Physical Review Letters 128, 040504 (2022).
- T. Nair.Ranjith, Optics Express 24, 3684 (2016).
- W.-K. Tham, H. Ferretti, and A. M. Steinberg, Physical Review Letters 118, 070801 (2017).
- M. Shah and L. Fan, Physical Review Applied 15, 034071 (2021).
- B. H. Tan, H. An, and C.-D. Ohl, Physical Review Letters 118, 054501 (2017).
- M. P. Backlund, Y. Shechtman, and R. L. Walsworth, Physical Review Letters 121, 023904 (2018).
- T. Cheng, D. Chen, and H. Li, Journal of Physics: Conference Series 1651, 012177 (2020).
- Z. Huang, G. K. Brennen, and Y. Ouyang, Physical Review Letters 129, 210502 (2022).
- W. Larson and B. E. A. Saleh, Optica 5, 1382 (2018).
- M. Tsang and R. Nair, Optica 6, 400 (2019).
- W. Larson and B. E. A. Saleh, Optica 6, 402 (2019).
- M. Tsang, Quantum 5, 527 (2021), 2103.08532 .
- K. Liang, S. A. Wadood, and A. N. Vamivakas, Optics Express 31, 2726 (2023).
- A. Sajia and X.-F. Qian, Physical Review Research 4, 033244 (2022).
- A. Sajia and X.-F. Qian, Superresolution picks entanglement over coherence (2023), arXiv:arXiv:2302.04909 .
- L. Mandel, Proc. Phys. Soc. (1959-09-01).
- J. W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill Series in Electrical and Computer Engineering (McGraw-Hill, New York, 1996).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 1st ed. (Cambridge University Press, 2012).
- S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański, Phys. Rev. A 94, 052108 (2016).
- J. Suzuki, Y. Yang, and M. Hayashi, Journal of Physics A: Mathematical and Theoretical 53, 453001 (2020).
- J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, New York, NY, 2006).