Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree conditions for Ramsey goodness of paths (2403.13742v1)

Published 20 Mar 2024 in math.CO

Abstract: A classical result of Chv\'atal implies that if $n \geq (r-1)(t-1) +1$, then any colouring of the edges of $K_n$ in red and blue contains either a monochromatic red $K_r$ or a monochromatic blue $P_t$. We study a natural generalization of his result, determining the exact minimum degree condition for a graph $G$ on $n = (r - 1)(t - 1) + 1$ vertices which guarantees that the same Ramsey property holds in $G$. In particular, using a slight generalization of a result of Haxell, we show that $\delta(G) \geq n - \lceil t/2 \rceil$ suffices, and that this bound is best possible. We also use a classical result of Bollob\'as, Erd\H{o}s, and Straus to prove a tight minimum degree condition in the case $r = 3$ for all $n \geq 2t - 1$.

Summary

We haven't generated a summary for this paper yet.