Experimental fault-tolerant code switching (2403.13732v1)
Abstract: Quantum error correction is a crucial tool for mitigating hardware errors in quantum computers by encoding logical information into multiple physical qubits. However, no single error-correcting code allows for an intrinsically fault-tolerant implementation of all the gates needed for universal quantum computing [1-3]. One way to tackle this problem is to switch between two suitable error-correcting codes, while preserving the encoded logical information, which in combination give access to a fault-tolerant universal gate set [4-6]. In this work, we present the first experimental implementation of fault-tolerant code switching between two codes. One is the seven-qubit color code [7], which features fault-tolerant CNOT and $H$ quantum gates, while the other one, the 10-qubit code [8], allows for a fault-tolerant $T$-gate implementation. Together they form a complementary universal gate set. Building on essential code switching building blocks, we construct logical circuits and prepare 12 different logical states which are not accessible natively in a fault-tolerant way within a single code. Finally, we use code switching to entangle two logical qubits employing the full universal gate set in a single logical quantum circuit. Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead, not relying on the probabilistic preparation of resource states.
- B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).
- A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv. 52, 1191 (1997).
- R. Solovay, Lie groups and quantum circuits, 2000 (1995).
- J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-tolerant conversion between the Steane and Reed-Muller quantum codes, Phys. Rev. Lett. 113, 080501 (2014).
- H. Bombín, Dimensional jump in quantum error correction, NJP 18, 043038 (2016).
- A. Kubica and M. E. Beverland, Universal transversal gates with color codes: A simplified approach, Phys. Rev. A 91, 032330 (2015).
- A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. London, Ser. A 452, 2551 (1996).
- M. Vasmer and A. Kubica, Morphing quantum codes, Phys. Rev. X Quantum 3, 030319 (2022).
- P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) p. 124.
- L. K. Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79, 4709 (1997).
- J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology (1997).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- P. Aliferis, D. Gottesman, and J. Preskill, Quantum accuracy threshold for concatenated distance-3 codes, Quantum Inf. Comput. 6, 97 (2006).
- E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation, Science 279, 342 (1998).
- D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008).
- H. Goto, Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code, Sci. Rep. 6, 1 (2016).
- C. Chamberland and A. W. Cross, Fault-tolerant magic state preparation with flag qubits, Quantum 3, 143 (2019).
- S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
- C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed |CCZ⟩ket𝐶𝐶𝑍|{CCZ}\rangle| italic_C italic_C italic_Z ⟩ to 2 |T⟩ket𝑇|{T}\rangle| italic_T ⟩ transformation, Quantum 3, 135 (2019).
- R. Chao and B. W. Reichardt, Quantum error correction with only two extra qubits, Phys. Rev. Lett. 121, 050502 (2018).
- C. Chamberland and M. E. Beverland, Flag fault-tolerant error correction with arbitrary distance codes, Quantum 2, 53 (2018).
- H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
- D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95, 230504 (2005).
- A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A 62, 022311 (2000).
- S. Wimperis, Composite pulses with rectangular excitation and inversion profiles, J. Magn. Reson. 83, 509 (1989).
- G. Q. AI, Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
- D. Kribs, R. Laflamme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94, 180501 (2005).
- J. Preskill, Fault-tolerant quantum computers (1998).
- Qiskit, Quantum information, https://docs.quantum.ibm.com/api/qiskit/quantum_info.
- S. Huang, K. R. Brown, and M. Cetina, Comparing Shor and Steane error correction using the Bacon-Shor code, arXiv preprint arXiv:2312.10851 (2023b).