Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental fault-tolerant code switching (2403.13732v1)

Published 20 Mar 2024 in quant-ph

Abstract: Quantum error correction is a crucial tool for mitigating hardware errors in quantum computers by encoding logical information into multiple physical qubits. However, no single error-correcting code allows for an intrinsically fault-tolerant implementation of all the gates needed for universal quantum computing [1-3]. One way to tackle this problem is to switch between two suitable error-correcting codes, while preserving the encoded logical information, which in combination give access to a fault-tolerant universal gate set [4-6]. In this work, we present the first experimental implementation of fault-tolerant code switching between two codes. One is the seven-qubit color code [7], which features fault-tolerant CNOT and $H$ quantum gates, while the other one, the 10-qubit code [8], allows for a fault-tolerant $T$-gate implementation. Together they form a complementary universal gate set. Building on essential code switching building blocks, we construct logical circuits and prepare 12 different logical states which are not accessible natively in a fault-tolerant way within a single code. Finally, we use code switching to entangle two logical qubits employing the full universal gate set in a single logical quantum circuit. Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead, not relying on the probabilistic preparation of resource states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).
  2. A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv. 52, 1191 (1997).
  3. R. Solovay, Lie groups and quantum circuits, 2000 (1995).
  4. J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-tolerant conversion between the Steane and Reed-Muller quantum codes, Phys. Rev. Lett. 113, 080501 (2014).
  5. H. Bombín, Dimensional jump in quantum error correction, NJP 18, 043038 (2016).
  6. A. Kubica and M. E. Beverland, Universal transversal gates with color codes: A simplified approach, Phys. Rev. A 91, 032330 (2015).
  7. A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. London, Ser. A 452, 2551 (1996).
  8. M. Vasmer and A. Kubica, Morphing quantum codes, Phys. Rev. X Quantum 3, 030319 (2022).
  9. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) p. 124.
  10. L. K. Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79, 4709 (1997).
  11. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  12. D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology (1997).
  13. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  14. P. Aliferis, D. Gottesman, and J. Preskill, Quantum accuracy threshold for concatenated distance-3 codes, Quantum Inf. Comput. 6, 97 (2006).
  15. E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation, Science 279, 342 (1998).
  16. D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008).
  17. H. Goto, Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code, Sci. Rep. 6, 1 (2016).
  18. C. Chamberland and A. W. Cross, Fault-tolerant magic state preparation with flag qubits, Quantum 3, 143 (2019).
  19. S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
  20. C. Gidney and A. G. Fowler, Efficient magic state factories with a catalyzed |C⁢C⁢Z⟩ket𝐶𝐶𝑍|{CCZ}\rangle| italic_C italic_C italic_Z ⟩ to 2 |T⟩ket𝑇|{T}\rangle| italic_T ⟩ transformation, Quantum 3, 135 (2019).
  21. R. Chao and B. W. Reichardt, Quantum error correction with only two extra qubits, Phys. Rev. Lett. 121, 050502 (2018).
  22. C. Chamberland and M. E. Beverland, Flag fault-tolerant error correction with arbitrary distance codes, Quantum 2, 53 (2018).
  23. H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
  24. D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95, 230504 (2005).
  25. A. Sørensen and K. Mølmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A 62, 022311 (2000).
  26. S. Wimperis, Composite pulses with rectangular excitation and inversion profiles, J. Magn. Reson. 83, 509 (1989).
  27. G. Q. AI, Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
  28. D. Kribs, R. Laflamme, and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94, 180501 (2005).
  29. J. Preskill, Fault-tolerant quantum computers (1998).
  30. Qiskit, Quantum information, https://docs.quantum.ibm.com/api/qiskit/quantum_info.
  31. S. Huang, K. R. Brown, and M. Cetina, Comparing Shor and Steane error correction using the Bacon-Shor code, arXiv preprint arXiv:2312.10851  (2023b).
Citations (8)

Summary

We haven't generated a summary for this paper yet.