Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projection-free computation of robust controllable sets with constrained zonotopes (2403.13730v1)

Published 20 Mar 2024 in math.OC, cs.RO, cs.SY, and eess.SY

Abstract: We study the problem of computing robust controllable sets for discrete-time linear systems with additive uncertainty. We propose a tractable and scalable approach to inner- and outer-approximate robust controllable sets using constrained zonotopes, when the additive uncertainty set is a symmetric, convex, and compact set. Our least-squares-based approach uses novel closed-form approximations of the Pontryagin difference between a constrained zonotopic minuend and a symmetric, convex, and compact subtrahend. Unlike existing approaches, our approach does not rely on convex optimization solvers, and is projection-free for ellipsoidal and zonotopic uncertainty sets. We also propose a least-squares-based approach to compute a convex, polyhedral outer-approximation to constrained zonotopes, and characterize sufficient conditions under which all these approximations are exact. We demonstrate the computational efficiency and scalability of our approach in several case studies, including the design of abort-safe rendezvous trajectories for a spacecraft in near-rectilinear halo orbit under uncertainty. Our approach can inner-approximate a 20-step robust controllable set for a 100-dimensional linear system in under 15 seconds on a standard computer.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust model predictive control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.
  2. D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2, pp. 219–224, 2005.
  3. Cambridge Univ. Press, 2017.
  4. M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in Proc. Euro. Ctrl. Conf., 2013.
  5. D. Bertsekas and I. Rhodes, “On the minimax reachability of target sets and target tubes,” Automatica, vol. 7, pp. 233–247, 1971.
  6. J. Scott, D. Raimondo, G. Marseglia, and R. Braatz, “Constrained zonotopes: A new tool for set-based estimation and fault detection,” Automatica, vol. 69, pp. 126–136, 2016.
  7. V. Raghuraman and J. Koeln, “Set operations and order reductions for constrained zonotopes,” Automatica, vol. 139, 2022.
  8. F. Gruber and M. Althoff, “Scalable robust safety filter with unknown disturbance set,” IEEE Trans. Auto. Ctrl., vol. 68, no. 12, pp. 7756–7770, 2023.
  9. L. Yang, H. Zhang, J. Jeannin, and N. Ozay, “Efficient backward reachability using the Minkowski difference of constrained zonotopes,” IEEE Trans. Comp.-Aided Design Integ. Circ. Syst., vol. 41, no. 11, pp. 3969–3980, 2022.
  10. J. Gleason, A. Vinod, and M. Oishi, “Lagrangian approximations for stochastic reachability of a target tube,” Automatica, vol. 125, 2021.
  11. A. Vinod, A. Weiss, and S. Di Cairano, “Abort-safe spacecraft rendezvous under stochastic actuation and navigation uncertainty,” in Proc. Conf. Dec. & Ctrl., 2021.
  12. A. Vinod, J. Gleason, and M. Oishi, “SReachTools: a MATLAB stochastic reachability toolbox,” in Proc. Hybrid Syst.: Comp. & Ctrl., pp. 33–38, 2019.
  13. D. Marsillach, S. Di Cairano, and A. Weiss, “Abort-safe spacecraft rendezvous on elliptic orbits,” IEEE. Trans. Ctrl. Syst. Tech., vol. 31, pp. 1133 – 1148, 2022.
  14. H. Ahn, K. Berntorp, P. Inani, A. Ram, and S. Di Cairano, “Reachability-based decision-making for autonomous driving: Theory and experiments,” IEEE. Trans. Ctrl. Syst. Tech., vol. 29, no. 5, pp. 1907–1921, 2020.
  15. F. Blanchini and S. Miani, Set-theoretic analysis of dynamic systems. Springer International Publishing, 2015.
  16. N. Malone, H. Chiang, K. Lesser, M. Oishi, and L. Tapia, “Hybrid dynamic moving obstacle avoidance using a stochastic reachable set-based potential field,” IEEE Trans. Rob., vol. 33, no. 5, pp. 1124–1138, 2017.
  17. C. Jones, E. Kerrigan, and J. Maciejowski, “On polyhedral projection and parametric programming,” J. Opt. Theory App., vol. 138, pp. 207–220, 2008.
  18. NASA, “Lunar gateway,” 2023. https://www.nasa.gov/mission/gateway/ (Last accessed: 2023).
  19. M. Althoff, “An introduction to CORA,” in Proc. App. Verif. Cont. Hybrid Syst., pp. 120–151, December 2015.
  20. Cambridge Univ. Press, 2018.
  21. Cambridge Univ. Press, 2004.
  22. A. Girard and C. Guernic, “Efficient reachability analysis for linear systems using support functions,” IFAC Proc. Vol., vol. 41, no. 2, pp. 8966–8971, 2008.
  23. I. Kolmanovsky and E. Gilbert, “Theory and computation of disturbance invariant sets for discrete-time linear systems,” Math. Prob. in Engg., vol. 4, pp. 317–367, 1998.
  24. S. Sadraddini and R. Tedrake, “Linear encodings for polytope containment problems,” in Proc. Conf. Dec. & Ctrl., pp. 4367–4372, IEEE, 2019.
  25. A. Kopetzki, B. Schürmann, and M. Althoff, “Methods for order reduction of zonotopes,” in Proc. Conf. Dec. & Ctrl., pp. 5626–5633, IEEE, 2017.
  26. J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in IEEE Intn’l Conf. Rob. Autom., pp. 284–289, 2004.
  27. Gurobi Opt., LLC, “Gurobi Optimizer Reference Manual.” https://www.gurobi.com (Last accessed: 2023).
  28. D. Marsillach, S. Di Cairano, U. Kalabić, and A. Weiss, “Fail-safe spacecraft rendezvous on near-rectilinear halo orbits,” in Proc. Amer. Ctrl. Conf., pp. 2980–2985, IEEE, 2021.
  29. V. Muralidharan, A. Weiss, and U. Kalabic, “Control strategy for long-term station-keeping on near-rectilinear halo orbits,” in AIAA Scitech, p. 1459, 2020.
  30. Cambridge Univ. Press, 2003.
  31. A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics, and constraints,” Automatica, vol. 35, 1999.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com