Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Matters for Active Texture Recognition With Vision-Based Tactile Sensors (2403.13701v1)

Published 20 Mar 2024 in cs.RO and cs.LG

Abstract: This paper explores active sensing strategies that employ vision-based tactile sensors for robotic perception and classification of fabric textures. We formalize the active sampling problem in the context of tactile fabric recognition and provide an implementation of information-theoretic exploration strategies based on minimizing predictive entropy and variance of probabilistic models. Through ablation studies and human experiments, we investigate which components are crucial for quick and reliable texture recognition. Along with the active sampling strategies, we evaluate neural network architectures, representations of uncertainty, influence of data augmentation, and dataset variability. By evaluating our method on a previously published Active Clothing Perception Dataset and on a real robotic system, we establish that the choice of the active exploration strategy has only a minor influence on the recognition accuracy, whereas data augmentation and dropout rate play a significantly larger role. In a comparison study, while humans achieve 66.9% recognition accuracy, our best approach reaches 90.0% in under 5 touches, highlighting that vision-based tactile sensors are highly effective for fabric texture recognition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. R. S. Johansson and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object manipulation tasks,” Nature Reviews Neuroscience, vol. 10, no. 5, pp. 345–359, 2009.
  2. H. Dang and P. K. Allen, “Stable grasping under pose uncertainty using tactile feedback,” Autonomous Robots, vol. 36, pp. 309–330, 2014.
  3. S. J. Lederman and R. L. Klatzky, “Extracting object properties through haptic exploration,” Acta psychologica, vol. 84, no. 1, pp. 29–40, 1993.
  4. W. Yuan, Y. Mo, S. Wang, and E. H. Adelson, “Active clothing material perception using tactile sensing and deep learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 4842–4849.
  5. T. Taunyazov, H. F. Koh, Y. Wu, C. Cai, and H. Soh, “Towards effective tactile identification of textures using a hybrid touch approach,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 4269–4275.
  6. T. Taunyazov, Y. Chua, R. Gao, H. Soh, and Y. Wu, “Fast texture classification using tactile neural coding and spiking neural network,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9890–9895.
  7. R. Gao, T. Tian, Z. Lin, and Y. Wu, “On explainability and sensor-adaptability of a robot tactile texture representation using a two-stage recurrent networks,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 1296–1303.
  8. B. M. R. Lima, V. P. da Fonseca, T. E. A. de Oliveira, Q. Zhu, and E. M. Petriu, “Dynamic tactile exploration for texture classification using a miniaturized multi-modal tactile sensor and machine learning,” in 2020 IEEE International Systems Conference (SysCon).   IEEE, 2020, pp. 1–7.
  9. S. Huang and H. Wu, “Texture recognition based on perception data from a bionic tactile sensor,” Sensors, vol. 21, no. 15, p. 5224, 2021.
  10. S.-a. Wang, A. Albini, P. Maiolino, F. Mastrogiovanni, and G. Cannata, “Fabric classification using a finger-shaped tactile sensor via robotic sliding,” Frontiers in Neurorobotics, vol. 16, p. 10, 2022.
  11. R. Li and E. H. Adelson, “Sensing and recognizing surface textures using a gelsight sensor,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1241–1247.
  12. G. Cao, Y. Zhou, D. Bollegala, and S. Luo, “Spatio-temporal attention model for tactile texture recognition,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9896–9902.
  13. A. Amini, J. I. Lipton, and D. Rus, “Uncertainty aware texture classification and mapping using soft tactile sensors,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4249–4256.
  14. “GelSight Mini System - GelSight,” Apr. 2023, [Online; accessed 1. Jun. 2023]. [Online]. Available: https://www.gelsight.com/product/gelsight-mini-system
  15. M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 3838–3845, 2020.
  16. A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing and sensors for robotic manipulation: can we turn tactile sensing into vision?” Advanced Robotics, vol. 33, no. 14, pp. 661–673, 2019.
  17. “Franka Emika - Next Generation Robotics.” May 2023, [Online; accessed 1. Jun. 2023]. [Online]. Available: https://www.franka.de
  18. B. Settles, “Active learning literature survey,” Machine Learning, vol. 15, no. 2, pp. 201–221, 1994.
  19. M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi et al., “A review of uncertainty quantification in deep learning: Techniques, applications and challenges,” Information Fusion, vol. 76, pp. 243–297, 2021.
  20. Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in deep learning,” in International Conference on Machine Learning (ICML).   PMLR, 2016, pp. 1050–1059.
  21. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–2826.
  22. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE, 2009, pp. 248–255.
  23. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.
  24. D. Shooter, “Use of two-point discrimination as a nerve repair assessment tool: preliminary report,” ANZ Journal of Surgery, vol. 75, no. 10, pp. 866–868, 2005.
Citations (3)

Summary

We haven't generated a summary for this paper yet.