Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian inversion with Student's t priors based on Gaussian scale mixtures (2403.13665v2)

Published 20 Mar 2024 in stat.CO

Abstract: Many inverse problems focus on recovering a quantity of interest that is a priori known to exhibit either discontinuous or smooth behavior. Within the Bayesian approach to inverse problems, such structural information can be encoded using Markov random field priors. We propose a class of priors that combine Markov random field structure with Student's t distribution. This approach offers flexibility in modeling diverse structural behaviors depending on available data. Flexibility is achieved by including the degrees of freedom parameter of Student's t distribution in the formulation of the Bayesian inverse problem. To facilitate posterior computations, we employ Gaussian scale mixture representation for the Student's t Markov random field prior, which allows expressing the prior as a conditionally Gaussian distribution depending on auxiliary hyperparameters. Adopting this representation, we can derive most of the posterior conditional distributions in a closed form and utilize the Gibbs sampler to explore the posterior. We illustrate the method with two numerical examples: signal deconvolution and image deblurring.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Y. M. Marzouk, H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics 228 (2009).
  2. Likelihood-informed dimension reduction for nonlinear inverse problems, Inverse Problems 30 (2014) 0114015.
  3. Bayesian inference with subset simulation in varying dimensions applied to the Karhunen–Loève expansion, International Journal for Numerical Methods in Engineering 122 (2021) 5100–5127.
  4. D. F. Andrews, C. L. Mallows, Scale mixtures of normal distributions, Journal of the Royal Statistical Society: Series B (Methodological) 36 (1974) 99–102.
  5. S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 (1984) 721–741.
  6. J. Geweke, Bayesian treatment of the independent Student-t linear model, Journal of Applied Econometrics 8 (1993) S19–S40.
  7. C. Fernandez, M. F. J. Steel, On Bayesian modeling of fat tails and skewness, Journal of the American Statistical Association 93 (1998) 359–371.
  8. Objective Bayesian analysis for the Student-t regression model, Biometrika 95 (2008) 325–333.
  9. M. Juárez, M. Steel, Model-based clustering of non-Gaussian panel data based on skew-t distributions, Journal of Business & Economic Statistics 28 (2010) 52–66.
  10. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors, Statistical Science 32 (2017) 1 – 28.
  11. Objective Bayesian analysis for the Student-t linear regression, Bayesian Analysis 16 (2021) 129–145.
  12. S. Y. Lee, The use of a log-normal prior for the Student t-distribution, Axioms 11 (2022).
  13. J. M. Bardsley, Gaussian Markov random field priors for inverse problems, Inverse Problems and Imaging 7 (2013) 397–416.
  14. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography, Inverse Problems and Imaging 8 (2014) 561–586.
  15. J. M. Bardsley, Laplace-distributed increments, the Laplace prior, and edge-preserving regularization, Journal of Inverse and Ill-Posed Problems 20 (2012) 271–285.
  16. Cauchy Markov random field priors for Bayesian inversion, Statistics and Computing 32 (2022) 1573–1375.
  17. Geometry parameter estimation for sparse X-ray log imaging, Journal of Mathematical Imaging and Vision 66 (2023) 154–166.
  18. Bayesian inversion with α𝛼\alphaitalic_α-stable priors, Inverse Problems 39 (2023) 105007.
  19. Horseshoe priors for edge-preserving linear Bayesian inversion, SIAM Journal on Scientific Computing 45 (2023) B337–B365.
  20. D. Calvetti, E. Somersalo, A Gaussian hypermodel to recover blocky objects, Inverse problems 23 (2007) 733–754.
  21. D. Calvetti, E. Somersalo, Hypermodels in the Bayesian imaging framework, Inverse problems 24 (2008) 034013 (20pp).
  22. Sparse reconstructions from few noisy data: Analysis of hierarchical Bayesian models with generalized gamma hyperpriors, Inverse Problems 36 (2020) 025010.
  23. K.-C. Chu, Estimation and decision for linear systems with elliptical random processes, IEEE Transactions on Automatic Control 18 (1973) 499–505.
  24. S. T. B. Choy, A. F. M. Smith, Hierarchical models with scale mixtures of normal distributions, Test 6 (1997).
  25. M. D. Hoffman, A. Gelman, The No-U-Turn Sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research 15 (2014) 1593–1623.
  26. P. Spanos, R. Ghanem, Stochastic finite element expansion for random media, Journal of Engineering Mechanics 115 (1989) 1035–1053.
  27. Discretization-invariant Bayesian inversion and Besov space priors, Inverse Problems & Imaging 3 (2009) 87–122.
  28. Bayesian neural network priors for edge-preserving inversion, Inverse Problems and Imaging 0 (2022) 1–26.
  29. M. West, On scale mixtures of normal distibutions, Biometrika 74 (1987) 646–648.
  30. M. J. Wainwright, E. Simoncelli, Scale mixtures of Gaussians and the statistics of natural images, in: Advances in Neural Information Processing Systems, volume 12, MIT Press, 1999.
  31. D. Higdon, A primer on space-time modeling from a Bayesian perspective, in: Statistical Methods for Spatio-Temporal Systems, Chapman & Hall/CRC, 2007, pp. 217–279.
  32. Sparsity promoting hybrid solvers for hierarchical Bayesian inverse problems, SIAM Journal on Scientific Computing 42 (2020) A3761–A3784.
  33. K. J. H. Law, V. Zankin, Sparse online variational Bayesian regression, SIAM/ASA Journal on Uncertainty Quantification 10 (2022) 1070–1100.
  34. C. Villa, S. Walker, Objective prior for the number of degrees of freedom of a t distribution, Bayesian Analysis 9 (2013) 1–24.
  35. MCMC methods for functions: Modifying old algorithms to make them faster, Statistical Science 28 (2013) 424–446.
  36. C. Andrieu, J. Thoms, A tutorial on adaptive MCMC, Statistics and Computing 18 (2008) 343–373.
  37. J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society. Series B (Methodological) 36 (1974) 192–236.
  38. G. O. Roberts, A. F. M. Smith, Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms, Stochastic Processes and their Applications 49 (1994) 207–216.
  39. L. Tierney, Markov chains for exploring posterior distributions, The Annals of Statistics 22 (1994) 1701–1762.
  40. Integral equation models for image restoration: High accuracy methods and fast algorithms, Inverse Problems 26 (2010) 045006.
Citations (2)

Summary

We haven't generated a summary for this paper yet.