Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General criterion for non-Hermitian skin effects and Application: Fock space skin effects in many body systems (2403.13595v3)

Published 20 Mar 2024 in quant-ph, cond-mat.mes-hall, cond-mat.quant-gas, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Non-Hermiticity enables macroscopic accumulation of bulk states, named non-Hermitian skin effects. The non-Hermitian skin effects are well-established for single-particle systems, but their proper characterization for general systems is elusive. Here, we propose a general criterion of non-Hermitian skin effects, which works for any finite-dimensional system evolved by a linear operator. The applicable systems include many-body systems and network systems. A system meeting the criterion exhibits enhanced non-normality of the evolution operator, accompanied by exceptional characteristics intrinsic to non-Hermitian systems. Applying the criterion, we discover a new type of non-Hermitian skin effect in many-body systems, which we dub the Fock space skin effect. We also discuss the Fock space skin effect-induced slow dynamics, which gives an experimental signal for the Fock space skin effect.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
  2. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
  3. N. Mott, Metal-insulator transitions (CRC Press, 2004).
  4. Z. G. Yuto Ashida and M. Ueda, Advances in Physics 69, 249 (2020), https://doi.org/10.1080/00018732.2021.1876991 .
  5. N. Okuma and M. Sato, Annual Review of Condensed Matter Physics 14, 83 (2023), https://doi.org/10.1146/annurev-conmatphys-040521-033133 .
  6. C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
  7. C. M. Bender, Reports on Progress in Physics 70, 947 (2007).
  8. M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 102, 065703 (2009).
  9. Y. C. Hu and T. L. Hughes, Phys. Rev. B 84, 153101 (2011).
  10. H. Schomerus, Opt. Lett. 38, 1912 (2013).
  11. T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
  12. S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
  13. K. Yokomizo and S. Murakami, Phys. Rev. Lett. 123, 066404 (2019).
  14. N. Okuma and M. Sato, Phys. Rev. Lett. 123, 097701 (2019).
  15. C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103 (2019).
  16. M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, Advances in Physics: X 7, 2109431 (2022), https://doi.org/10.1080/23746149.2022.2109431 .
  17. W. Zhu and L. Li, “A brief review of hybrid skin-topological effect,”  (2023), arXiv:2311.06637 [cond-mat.mes-hall] .
  18. G. Hwang and H. Obuse, Phys. Rev. B 108, L121302 (2023).
  19. E. Zhao, Z. Wang, C. He, T. F. J. Poon, K. K. Pak, Y.-J. Liu, P. Ren, X.-J. Liu,  and G.-B. Jo, “Two-dimensional non-hermitian skin effect in an ultracold fermi gas,”  (2023), arXiv:2311.07931 [cond-mat.quant-gas] .
  20. C. H. Lee, Phys. Rev. B 104, 195102 (2021).
  21. X. Feng and S. Chen, Phys. Rev. B 109, 014313 (2024).
  22. S. Longhi, Phys. Rev. B 108, 075121 (2023).
  23. W. N. Faugno and T. Ozawa, Phys. Rev. Lett. 129, 180401 (2022).
  24. J. Liu and Z. Xu, Phys. Rev. B 108, 184205 (2023).
  25. B. Dóra and C. P. Moca, Phys. Rev. B 106, 235125 (2022).
  26. T. Yoshida, S.-B. Zhang, T. Neupert,  and N. Kawakami, “Non-hermitian mott skin effect,”  (2023), arXiv:2309.14111 [cond-mat.str-el] .
  27. J. Gliozzi, G. D. Tomasi,  and T. L. Hughes, “Many-body non-hermitian skin effect for multipoles,”  (2024), arXiv:2401.04162 [cond-mat.str-el] .
  28. S. Hamanaka and K. Kawabata, “Multifractality of many-body non-hermitian skin effect,”  (2024), arXiv:2401.08304 [cond-mat.str-el] .
  29. B. H. Kim, J.-H. Han,  and M. J. Park, “Collective non-hermitian skin effect: Point-gap topology and the doublon-holon excitations in non-reciprocal many-body systems,”  (2023), arXiv:2309.07894 [cond-mat.str-el] .
  30. R. Shen, T. Chen, B. Yang,  and C. H. Lee, “Observation of the non-hermitian skin effect and fermi skin on a digital quantum computer,”  (2023), arXiv:2311.10143 [quant-ph] .
  31. See Sec. S1 for the proof of Theorem 1. Also, see Sec. S2 for understanding how tight the evaluation in Theorem 1 is.
  32. N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996).
  33. N. Hatano and D. R. Nelson, Phys. Rev. B 56, 8651 (1997).
  34. See Sec. S3.
  35. J. C. Budich and E. J. Bergholtz, Phys. Rev. Lett. 125, 180403 (2020).
  36. T. Mori and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020).
  37. L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, 2005).
  38. N. Okuma and M. Sato, Phys. Rev. B 102, 014203 (2020).
  39. Y. O. Nakai, N. Okuma, D. Nakamura, K. Shimomura,  and M. Sato, “Topological enhancement of non-normality in non-hermitian skin effects,”  (2023), arXiv:2304.06689 [cond-mat.mes-hall] .
  40. See Sec. S4 for the more accurate statement and the proof of Theorem 2.
  41. K. Petermann, IEEE Journal of Quantum Electronics 15, 566 (1979).
  42. A. E. Siegman, Phys. Rev. A 39, 1253 (1989).
  43. See Sec. S5 for the spectral change between the periodic and open boundary conditions.
  44. See Sec. S6 for the derivation of the estimation.
  45. G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
  46. See Sec. S7 for the derivation of this form.
  47. Note that Im⁢EmImsubscript𝐸𝑚{\rm Im}E_{m}roman_Im italic_E start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is negative since it is given by −i⁢\sum@⁢\slimits@r⁢Lr†⁢Lr/2𝑖\sum@subscript\slimits@𝑟superscriptsubscript𝐿𝑟†subscript𝐿𝑟2-i\sum@\slimits@_{r}L_{r}^{\dagger}L_{r}/2- italic_i start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT / 2 in Heffsubscript𝐻effH_{\rm eff}italic_H start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT.
  48. K. Shimomura and M. Sato, “The absence of the non-hermitian skin effect in hermitian systems and fock space skin effect,”  (August, 2023), presented in Non-Hermitian Topology: from Classical Optics to Quantum Matter (Dresden, Germany).
  49. R. Shen, F. Qin, J.-Y. Desaules, Z. Papić,  and C. H. Lee, “Enhanced many-body quantum scars from the non-hermitian fock skin effect,”  (2024), arXiv:2403.02395 [cond-mat.quant-gas] .
  50. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991).
  51. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University Press, 2012).
Citations (3)

Summary

We haven't generated a summary for this paper yet.