General criterion for non-Hermitian skin effects and Application: Fock space skin effects in many body systems (2403.13595v3)
Abstract: Non-Hermiticity enables macroscopic accumulation of bulk states, named non-Hermitian skin effects. The non-Hermitian skin effects are well-established for single-particle systems, but their proper characterization for general systems is elusive. Here, we propose a general criterion of non-Hermitian skin effects, which works for any finite-dimensional system evolved by a linear operator. The applicable systems include many-body systems and network systems. A system meeting the criterion exhibits enhanced non-normality of the evolution operator, accompanied by exceptional characteristics intrinsic to non-Hermitian systems. Applying the criterion, we discover a new type of non-Hermitian skin effect in many-body systems, which we dub the Fock space skin effect. We also discuss the Fock space skin effect-induced slow dynamics, which gives an experimental signal for the Fock space skin effect.
- P. W. Anderson, Phys. Rev. 109, 1492 (1958).
- F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
- N. Mott, Metal-insulator transitions (CRC Press, 2004).
- Z. G. Yuto Ashida and M. Ueda, Advances in Physics 69, 249 (2020), https://doi.org/10.1080/00018732.2021.1876991 .
- N. Okuma and M. Sato, Annual Review of Condensed Matter Physics 14, 83 (2023), https://doi.org/10.1146/annurev-conmatphys-040521-033133 .
- C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998).
- C. M. Bender, Reports on Progress in Physics 70, 947 (2007).
- M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 102, 065703 (2009).
- Y. C. Hu and T. L. Hughes, Phys. Rev. B 84, 153101 (2011).
- H. Schomerus, Opt. Lett. 38, 1912 (2013).
- T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
- S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
- K. Yokomizo and S. Murakami, Phys. Rev. Lett. 123, 066404 (2019).
- N. Okuma and M. Sato, Phys. Rev. Lett. 123, 097701 (2019).
- C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103 (2019).
- M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, Advances in Physics: X 7, 2109431 (2022), https://doi.org/10.1080/23746149.2022.2109431 .
- W. Zhu and L. Li, “A brief review of hybrid skin-topological effect,” (2023), arXiv:2311.06637 [cond-mat.mes-hall] .
- G. Hwang and H. Obuse, Phys. Rev. B 108, L121302 (2023).
- E. Zhao, Z. Wang, C. He, T. F. J. Poon, K. K. Pak, Y.-J. Liu, P. Ren, X.-J. Liu, and G.-B. Jo, “Two-dimensional non-hermitian skin effect in an ultracold fermi gas,” (2023), arXiv:2311.07931 [cond-mat.quant-gas] .
- C. H. Lee, Phys. Rev. B 104, 195102 (2021).
- X. Feng and S. Chen, Phys. Rev. B 109, 014313 (2024).
- S. Longhi, Phys. Rev. B 108, 075121 (2023).
- W. N. Faugno and T. Ozawa, Phys. Rev. Lett. 129, 180401 (2022).
- J. Liu and Z. Xu, Phys. Rev. B 108, 184205 (2023).
- B. Dóra and C. P. Moca, Phys. Rev. B 106, 235125 (2022).
- T. Yoshida, S.-B. Zhang, T. Neupert, and N. Kawakami, “Non-hermitian mott skin effect,” (2023), arXiv:2309.14111 [cond-mat.str-el] .
- J. Gliozzi, G. D. Tomasi, and T. L. Hughes, “Many-body non-hermitian skin effect for multipoles,” (2024), arXiv:2401.04162 [cond-mat.str-el] .
- S. Hamanaka and K. Kawabata, “Multifractality of many-body non-hermitian skin effect,” (2024), arXiv:2401.08304 [cond-mat.str-el] .
- B. H. Kim, J.-H. Han, and M. J. Park, “Collective non-hermitian skin effect: Point-gap topology and the doublon-holon excitations in non-reciprocal many-body systems,” (2023), arXiv:2309.07894 [cond-mat.str-el] .
- R. Shen, T. Chen, B. Yang, and C. H. Lee, “Observation of the non-hermitian skin effect and fermi skin on a digital quantum computer,” (2023), arXiv:2311.10143 [quant-ph] .
- See Sec. S1 for the proof of Theorem 1. Also, see Sec. S2 for understanding how tight the evaluation in Theorem 1 is.
- N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996).
- N. Hatano and D. R. Nelson, Phys. Rev. B 56, 8651 (1997).
- See Sec. S3.
- J. C. Budich and E. J. Bergholtz, Phys. Rev. Lett. 125, 180403 (2020).
- T. Mori and T. Shirai, Phys. Rev. Lett. 125, 230604 (2020).
- L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (Princeton University Press, 2005).
- N. Okuma and M. Sato, Phys. Rev. B 102, 014203 (2020).
- Y. O. Nakai, N. Okuma, D. Nakamura, K. Shimomura, and M. Sato, “Topological enhancement of non-normality in non-hermitian skin effects,” (2023), arXiv:2304.06689 [cond-mat.mes-hall] .
- See Sec. S4 for the more accurate statement and the proof of Theorem 2.
- K. Petermann, IEEE Journal of Quantum Electronics 15, 566 (1979).
- A. E. Siegman, Phys. Rev. A 39, 1253 (1989).
- See Sec. S5 for the spectral change between the periodic and open boundary conditions.
- See Sec. S6 for the derivation of the estimation.
- G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
- See Sec. S7 for the derivation of this form.
- Note that ImEmImsubscript𝐸𝑚{\rm Im}E_{m}roman_Im italic_E start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is negative since it is given by −i\sum@\slimits@rLr†Lr/2𝑖\sum@subscript\slimits@𝑟superscriptsubscript𝐿𝑟†subscript𝐿𝑟2-i\sum@\slimits@_{r}L_{r}^{\dagger}L_{r}/2- italic_i start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT / 2 in Heffsubscript𝐻effH_{\rm eff}italic_H start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT.
- K. Shimomura and M. Sato, “The absence of the non-hermitian skin effect in hermitian systems and fock space skin effect,” (August, 2023), presented in Non-Hermitian Topology: from Classical Optics to Quantum Matter (Dresden, Germany).
- R. Shen, F. Qin, J.-Y. Desaules, Z. Papić, and C. H. Lee, “Enhanced many-body quantum scars from the non-hermitian fock skin effect,” (2024), arXiv:2403.02395 [cond-mat.quant-gas] .
- R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, 1991).
- R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge University Press, 2012).