Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective model of protein--mediated interactions in chromatin (2403.13569v1)

Published 20 Mar 2024 in q-bio.BM and cond-mat.soft

Abstract: Protein-mediated interactions are ubiquitous in the cellular environment, and particularly in the nucleus, where they are responsible for the structuring of chromatin. We show through molecular--dynamics simulations of a polymer surrounded by binders that the strength of the binder-polymer interaction separates an equilibrium from a non-equilibrium regime. In the equilibrium regime, the system can be efficiently described by an effective model in which the binders are traced out. Even in this case, the polymer display features that are different from those of a standard homopolymer interacting with two-body interactions. We then extend the effective model to deal with the case where binders cannot be regarded as in equilibrium and a new phenomenology appears, including local blobs in the polymer. Providing an effective description of the system can be useful in clarifying the fundamental mechanisms governing chromatin structuring.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. D. Ivanov and K. Nasmyth, A Topological Interaction between Cohesin Rings and a Circular Minichromosome, Cell 122, 849 (2005).
  2. T. C. James and S. C. R. Elgin, Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene., Mol. Cell. Biol. 6, 3862 (1986).
  3. R. T. Dame, The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin, Mol. Microbiol. 56, 858 (2005).
  4. A. Goloborodko, J. F. Marko, and L. A. Mirny, Chromosome Compaction by Active Loop Extrusion, Biophys. J. 110, 2162 (2016).
  5. R. Eskeland, A. Eberharter, and A. Imhof, HP1 Binding to Chromatin Methylated at H3K9 Is Enhanced by Auxiliary Factors, Mol. Cell. Biol. 27, 453 (2007).
  6. M. Nicodemi, B. Panning, and A. Prisco, A Thermodynamic Switch for Chromosome Colocalization, Genetics 179, 717 (2008).
  7. A. Rosa and N. Becker, Looping Probabilities in Model Interphase Chromosomes, Biophys. J.  (2010).
  8. L. A. Mirny, The fractal globule as a model of chromatin architecture in the cell, Chromosome Res. 19, 37 (2011).
  9. D. Michieletto, E. Orlandini, and D. Marenduzzo, Polymer model with Epigenetic Recoloring Reveals a Pathway for the de novo Establishment and 3D Organization of Chromatin Domains, Phys. Rev. X 6, 041047 (2016).
  10. A. Y. Grosberg and A. Khokhlov, Statistical Physics of Macromolecules (AIP Press, Woodbury, NY, 1994).
  11. R. Zwanzig, Memory Effects in Irreversible Thermodynamics, Phys. Rev. 124, 983 (1961).

Summary

We haven't generated a summary for this paper yet.