Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Augmented LRFS-based Filter: Holistic Tracking of Group Objects (2403.13562v4)

Published 20 Mar 2024 in eess.SY and cs.SY

Abstract: This paper addresses the problem of group target tracking (GTT), wherein multiple closely spaced targets within a group pose a coordinated motion. To improve the tracking performance, the labeled random finite sets (LRFSs) theory is adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs, which introduces group information into the definition of LRFSs. Specifically, for each element in an LRFS, the kinetic states, track label, and the corresponding group information of its represented target are incorporated. Furthermore, by means of the labeled multi-Bernoulli (LMB) filter with the proposed augmented LRFSs, the group structure is iteratively propagated and updated during the tracking process, which achieves the simultaneously estimation of the kinetic states, track label, and the corresponding group information of multiple group targets, and further improves the GTT tracking performance. Finally, simulation experiments are provided, which well demonstrates the effectiveness of the labeled multi-Bernoulli filter with the proposed augmented LRFSs for GTT tracking.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. L. Guerlin, B. Pannetier, M. Rombaut, and M. Derome, “Study on group target tracking to counter swarms of drones,” in Proceedings of Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX;, vol. 11423, no. 04, Apr. 2020, pp. 1–21.
  2. Z. Su, L. Liu, H. Ji, and C. Tian, “A variational Bayesian approach for partly resolvable group tracking,” Signal Process., vol. 203, no. 1, pp. 1–11, Oct 2021.
  3. Q. Wang and B. Ayalew, “A probabilistic framework for tracking the formation and evolution of multi-vehicle groups in public traffic in the presence of observation uncertainties,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 2, pp. 560–571, Feb. 2018.
  4. J. Lan and X. R. Li, “Extended-Object or group-target tracking using random matrix with nonlinear measurements,” IEEE Trans. Signal Process., vol. 67, no. 19, pp. 5130–5142, OCt. 2019.
  5. M. Senanayake, I. Senthooran, J. C. Barca, H. Chung, J. Kamryzzaman, and M. Murshed, “Search and tracking algorithms for swarms of robots: A survey,” Rob. Auton. Syst., vol. 75, no. B, pp. 422–434, Jan. 2016.
  6. X. Cheng, H. Ji, and Y. Zhang, “Improved box particle CPHD algorithm for group target tracking,” in Proceedings of ICCAIS, Chengdu, China, Oct. 2019, pp. 1–7.
  7. X. Zhang, H. Liu, F. Meng, and X. Shen, “Group target tracking via jointly optimizing group partition and association,” Automatica, vol. 153, pp. 111 013–111 027, July 2023.
  8. X. Zhang, F. Meng, H. Liu, X. Shen, and Y. Zhu, “Seamless tracking of group targets and ungrouped targets using belief propagation,” preprint arXiv:2208.12035, pp. 1–31, 2022.
  9. L. Mihaylova, A. Y. Carmi, F. Septier, A. Ging, S. K. Pang, and S. Godsill, “Overview of Bayesian sequential monte carlo methods for group and extended object tracking,” Digit. Signal Process., vol. 25, no. 0, pp. 1–16, Feb. 2014.
  10. A. Gning, L. Mihaylova, S. Maskell, S. K. Pang, and S. Godsill, “Group object structure and state estimation with evolving networks and Monte Carlo methods,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1383–1396, Apr. 2011.
  11. G. Li, G. Li, and Y. He, “Labeled multi-Bernoulli filter based multiple resolvable group targets tracking with leader-follower model,” IEEE Trans. Signal Process., vol. 59, no. 5, pp. 6683–6694, Oct. 2023.
  12. W. Liu, S. Zhu, C. Wen, and Y. Yu, “Structure modeling and estimation of multiple resolvable group targets via graph theory and multi-Bernoulli filter,” Automatica, vol. 89, pp. 274–289, Mar 2018.
  13. Y. Zhou, J. Zhao, S. Wu, and C. Liu, “A Poisson multi-Bernoulli mixture filter for tracking multiple resolvable group targets,” Digit. Signal Process., vol. 144, no. 0, pp. 104 279–104 288, Jan. 2024.
  14. G. Li, G. Li, and Y. He, “Resolvable group target tracking via multi-Bernoulli filter and its application to sensor control scenario,” IEEE Trans. Signal Process., vol. 70, no. 1, pp. 6286–6299, Oct. 2022.
  15. B.-N. Vo, B.-T. Vo, and D. Phung, “Labeled random finite sets and the Bayes multi-target tracking filter,” IEEE Trans. Signal Process., vol. 62, no. 24, pp. 6554–6567, Dec. 2014.
  16. C. Yang, F. Li, Z. Shi, R. Lu, and K. Choo, “A crowdsensing-based cyber-physical system for drone surveillance using random finite set theory,” ACM Trans. CPS, vol. 3, no. 4, pp. 1–22, Oct. 2019.
  17. C. Yang, X. Cao, L. He, and H. Zhang, “Distributed multiple attacks detection via consensus AA-GMPHD filter,” IEEE Trans. Syst. Man Cybern. Syst., vol. 53, no. 12, pp. 7526–7536, Dec. 2023.
  18. B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object conjugate priors,” IEEE Trans. Signal Process., vol. 61, no. 13, pp. 3460–3475, July 2013.
  19. S. Reuter, B.-T. Vo, B.-N. Vo, and K. Dietmayer, “The labeled multi-Bernoulli filter,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3246–3260, June 2014.
  20. S. Reuter, A. Scheel, and K. Dietmayer, “The multiple model labeled multi-Bernoulli filter,” in Proceedings of Fusion, Washington, USA, July 2015, pp. 1574–1580.
  21. C. Yang, L. Mo, X. Cao, H. Zhang, and Z. Shi, “A labeled rfs-based framework for multiple integrity attackers detection and identification in cyber-physical systems,” IEEE Internet Things J., vol. 10, no. 21, pp. 19 244–19 256, Nov. 2023.
  22. T. Li, X. Wang, Y. Liang, and Q. Pan, “On arithmetic average fusion and its application for distributed multi-Bernoulli multitarget tracking,” IEEE Trans. Signal Process., vol. 68, pp. 2883–2896, Apr. 2020.
  23. Q. Li and S. Godsill, “A new leader-follower model for Bayesian tracking,” in Proceedings of Fusion, Rustenburg, South Africa, July 2020, pp. 1–8.

Summary

We haven't generated a summary for this paper yet.