Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A high-fidelity material point method for frictional contact problems (2403.13534v1)

Published 20 Mar 2024 in math.NA and cs.NA

Abstract: A novel Material Point Method (MPM) is introduced for addressing frictional contact problems. In contrast to the standard multi-velocity field approach, this method employs a penalty method to evaluate contact forces at the discretised boundaries of their respective physical domains. This enhances simulation fidelity by accurately considering the deformability of the contact surface, preventing fictitious gaps between bodies in contact. Additionally, the method utilises the Extended B-Splines (EBSs) domain approximation, providing two key advantages. First, EBSs robustly mitigate grid cell-crossing errors by offering continuous gradients of the basis functions on the interface between adjacent grid cells. Second, numerical integration errors are minimised, even with small physical domains in occupied grid cells. The proposed method's robustness and accuracy are evaluated through benchmarks, including comparisons with analytical solutions, other MPM-based contact algorithms, and experimental observations from the literature. Notably, the method demonstrates effective mitigation of stress errors inherent in contact simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. doi:10.1016/J.IJMECSCI.2020.105634.
  2. doi:10.1016/J.COMPGEO.2019.103143.
  3. doi:10.1016/J.IJNONLINMEC.2012.02.004.
  4. doi:10.1002/NME.1620300708.
  5. doi:10.1007/S00466-012-0813-8.
  6. doi:10.1007/s00466-018-1599-0.
  7. doi:10.1016/J.CMA.2010.09.006.
  8. doi:https://doi.org/10.1002/nme.6857.
  9. doi:10.1016/J.CMA.2018.01.012.
  10. doi:10.1016/J.CMA.2020.113394.
  11. doi:https://doi.org/10.1002/nme.2614.
  12. doi:10.1007/s00466-011-0623-4.
  13. doi:https://doi.org/10.1016/S0924-0136(97)00293-8.
  14. doi:10.1016/0045-7825(94)90112-0.
  15. doi:10.1016/J.CMA.2019.07.011.
  16. doi:10.1016/J.CMA.2019.112622.
  17. doi:10.3970/cmes.2001.002.509.
  18. doi:10.1002/nme.5317.
  19. doi:10.1016/j.cma.2019.06.014.
  20. doi:10.1016/j.cma.2018.11.005.
  21. doi:10.1016/J.CMA.2020.112859.
  22. doi:10.1016/J.CMA.2021.114063.
  23. doi:10.1016/J.CMA.2020.113503.
  24. doi:10.1016/J.CMA.2021.113739.
  25. doi:https://doi.org/10.1002/nme.6598.
  26. doi:10.1016/J.PROENG.2017.01.038.
  27. doi:10.1002/nme.2981.
  28. doi:10.1016/J.CMA.2020.113168.
  29. doi:10.1016/J.CMA.2023.116260.
  30. doi:10.1016/J.CMA.2022.115814.
  31. doi:10.3970/CMES.2004.005.477.
  32. doi:10.1016/J.COMPSTRUC.2017.05.004.
  33. doi:10.1002/NME.3110.
  34. doi:10.1002/NME.6257.
  35. doi:10.1002/NME.4526.
  36. doi:10.1002/NME.6588.
  37. doi:10.1016/J.CMA.2019.04.024.
  38. doi:10.1007/978-3-031-24070-6.
  39. doi:10.1002/NME.7389.
  40. doi:10.1016/J.COMPSTRUC.2018.11.003.
  41. doi:10.1016/j.cma.2020.113346.
  42. doi:10.1016/0010-4655(94)00170-7.
  43. doi:10.1137/S0036142900373208.
  44. doi:DOI:10.1017/CBO9780511755446.
  45. doi:10.1002/NME.3159.
  46. doi:10.1016/J.CMA.2004.10.008.
  47. doi:10.1007/s00419-017-1272-7.
  48. doi:10.1016/J.CMA.2017.01.035.
  49. doi:10.1016/J.JCP.2017.02.050.
  50. doi:10.1016/J.JCP.2023.112075.
  51. doi:10.1137/1.9781611970845.
  52. doi:10.1016/J.CMA.2019.04.008.
  53. doi:10.1016/J.JCP.2011.04.032.
  54. doi:DOI:10.1017/CBO9781139171731.

Summary

We haven't generated a summary for this paper yet.