Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-photon super-linear image scanning microscopy using upconversion nanoparticles (2403.13436v1)

Published 20 Mar 2024 in physics.optics and physics.app-ph

Abstract: Super-resolution fluorescence microscopy is of great interest in life science studies for visualizing subcellular structures at the nanometer scale. Among various kinds of super-resolution approaches, image scanning microscopy (ISM) offers a doubled resolution enhancement in a simple and straightforward manner, based on the commonly used confocal microscopes. ISM is also suitable to be integrated with multi-photon microscopy techniques, such as two-photon excitation and second-harmonic generation imaging, for deep tissue imaging, but it remains the twofold limited resolution enhancement and requires expensive femtosecond lasers. Here, we present and experimentally demonstrate the super-linear ISM (SL-ISM) to push the resolution enhancement beyond the factor of two, with a single low-power, continuous-wave, and near-infrared laser, by harnessing the emission nonlinearity within the multiphoton excitation process of lanthanide-doped upconversion nanoparticles (UCNPs). Based on a modified confocal microscope, we achieve a resolution of about 120 nm, 1/8th of the excitation wavelength. Furthermore, we demonstrate a parallel detection strategy of SL-ISM with the multifocal structured excitation pattern, to speed up the acquisition frame rate. This method suggests a new perspective for super-resolution imaging or sensing, multi-photon imaging, and deep-tissue imaging with simple, low-cost, and straightforward implementations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. S. J. Sahl, S. W. Hell, and S. Jakobs, Fluorescence nanoscopy in cell biology, Nature Reviews Molecular Cell Biology 18, 685 (2017).
  2. S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters 19, 780 (1994).
  3. M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm), Nature Methods 3, 793 (2006).
  4. M. G. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, Journal of Microscopy 198, 82 (2000).
  5. M. G. Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution, Proceedings of the National Academy of Sciences 102, 13081 (2005).
  6. C. B. Müller and J. Enderlein, Image scanning microscopy, Physical Review Letters 104, 198101 (2010).
  7. C. J. Sheppard, S. B. Mehta, and R. Heintzmann, Superresolution by image scanning microscopy using pixel reassignment, Optics Letters 38, 2889 (2013).
  8. S. Wu and H.-J. Butt, Near-infrared-sensitive materials based on upconverting nanoparticles, Advanced Materials 28, 1208 (2016).
  9. I. Gregor and J. Enderlein, Image scanning microscopy, Current opinion in chemical biology 51, 74 (2019).
  10. E. N. Ward, F. H. Torkelsen, and R. Pal, Enhancing multi-spot structured illumination microscopy with fluorescence difference, Royal Society Open Science 5, 171336 (2018).
Citations (2)

Summary

We haven't generated a summary for this paper yet.