2000 character limit reached
Mechanized HOL Reasoning in Set Theory (2403.13403v1)
Published 20 Mar 2024 in cs.LO
Abstract: We present a mechanized embedding of higher-order logic (HOL) and algebraic data types (ADT) into first-order logic with ZFC axioms. We implement this in the Lisa proof assistant for schematic first-order logic and its library based on axiomatic set theory. HOL proof steps are implemented as proof producing tactics in Lisa, and the types are interpreted as sets, with function (or arrow) types coinciding with set-theoretic function spaces. The embedded HOL proofs, as opposed to being a layer over the existing proofs, are interoperable with the existing library. This yields a form of soft type system supporting top-level polymorphism and ADTs over set theory, and offer tools to reason about functions in set theory.
- Candle: A Verified Implementation of HOL Light. In DROPS-IDN/v2/Document/10.4230/LIPIcs.ITP.2022.3. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.3.
- Experiments with zf set theory in hol and isabelle. In E. Thomas Schubert, Philip J. Windley, and James Alves-Foss, editors, Higher Order Logic Theorem Proving and Its Applications, pages 32–45, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.
- Rob Arthan. HOL Constant Definition Done Right. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving, Lecture Notes in Computer Science, pages 531–536, Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-08970-6_34.
- Lambda Calculus with Types. Perspectives in Logic. Cambridge University Press, 2013.
- Chad Brown. The Egal Manual, 2014.
- Chad E. Brown. Combining type theory and untyped set theory. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning, pages 205–219, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
- Higher-Order Tarski Grothendieck as a Foundation for Formal Proof. In ITP, 2019. doi:10.4230/LIPIcs.ITP.2019.9.
- Mario M Carneiro. Conversion of hol light proofs into metamath. Journal of Formalized Reasoning, 9(1):187–200, Jan. 2016. URL: https://jfr.unibo.it/article/view/4596, doi:10.6092/issn.1972-5787/4596.
- G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift, 39:176–210, 1935.
- Mike Gordon. Set theory, higher order logic or both? In W. Brauer, D. Gries, J. Stoer, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving in Higher Order Logics, volume 1125, pages 191–201. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996. doi:10.1007/BFb0105405.
- Simon Guilloud. LISA Reference Manual. EPFL-LARA, February 2023.
- LISA – A Modern Proof System. In 14th Conference on Interactive Theorem Proving, Leibniz International Proceedings in Informatics, pages 17:1–17:19, Bialystok, 2023. Daghstuhl.
- John Harrison. HOL Light: An Overview. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, volume 5674, pages 60–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi:10.1007/978-3-642-03359-9_4.
- Thomas Jech. Set theory: The third millennium edition, revised and expanded. Springer, 2003.
- Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.
- Combining higher-order logic with set theory formalizations. Journal of Automated Reasoning, 67(2):20, May 2023. doi:10.1007/s10817-023-09663-5.
- A mechanized translation from higher-order logic to set theory. In Matt Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, pages 323–338, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
- Kenneth Kunen. Set Theory An Introduction To Independence Proofs. North Holland, Amsterdam Heidelberg, reprint edition edition, December 1983.
- Thomas F. Melham. Automating Recursive Type Definitions in Higher Order Logic, pages 341–386. Springer New York, New York, NY, 1989. doi:10.1007/978-1-4612-3658-0_9.
- Elliott Mendelson. Introduction to Mathematical Logic. Springer US, Boston, MA, 1987. doi:10.1007/978-1-4615-7288-6.
- The lean 4 theorem prover and programming language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28, pages 625–635, Cham, 2021. Springer International Publishing.
- A Brief Overview of Mizar. In Proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, volume 5674, pages 67–72, August 2009. doi:10.1007/978-3-642-03359-9_5.
- Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-45949-9.
- Steven Obua. Partizan games in Isabelle/HOLZF. pages 272–286, November 2006. doi:10.1007/11921240_19.
- Type inference for zfh. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, pages 87–101, Cham, 2015. Springer International Publishing.
- Stanislas Polu. HOL Light / ProofTrace: Modern proof steps recording for hol light. https://github.com/jrh13/hol-light/tree/master/ProofTrace. Accessed: 2024-03-18.
- A Brief Overview of HOL4. In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages 28–32, Berlin, Heidelberg, 2008. Springer. doi:10.1007/978-3-540-71067-7_6.
- The Coq Development Team. The coq proof assistant, July 2023. doi:10.5281/zenodo.8161141.