Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MULAN-WC: Multi-Robot Localization Uncertainty-aware Active NeRF with Wireless Coordination (2403.13348v2)

Published 20 Mar 2024 in cs.RO

Abstract: This paper presents MULAN-WC, a novel multi-robot 3D reconstruction framework that leverages wireless signal-based coordination between robots and Neural Radiance Fields (NeRF). Our approach addresses key challenges in multi-robot 3D reconstruction, including inter-robot pose estimation, localization uncertainty quantification, and active best-next-view selection. We introduce a method for using wireless Angle-of-Arrival (AoA) and ranging measurements to estimate relative poses between robots, as well as quantifying and incorporating the uncertainty embedded in the wireless localization of these pose estimates into the NeRF training loss to mitigate the impact of inaccurate camera poses. Furthermore, we propose an active view selection approach that accounts for robot pose uncertainty when determining the next-best views to improve the 3D reconstruction, enabling faster convergence through intelligent view selection. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our framework in theory and in practice. Leveraging wireless coordination and localization uncertainty-aware training, MULAN-WC can achieve high-quality 3d reconstruction which is close to applying the ground truth camera poses. Furthermore, the quantification of the information gain from a novel view enables consistent rendering quality improvement with incrementally captured images by commending the robot the novel view position. Our hardware experiments showcase the practicality of deploying MULAN-WC to real robotic systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. M. Meilland, A. I. Comport, and P. Rives, “Dense omnidirectional rgb-d mapping of large-scale outdoor environments for real-time localization and autonomous navigation,” Journal of Field Robotics, vol. 32, no. 4, pp. 474–503, 2015.
  2. Y.-J. Yeh and H.-Y. Lin, “3d reconstruction and visual slam of indoor scenes for augmented reality application,” in 2018 IEEE 14th International Conference on Control and Automation (ICCA), 2018, pp. 94–99.
  3. Y. Nie, J. Hou, X. Han, and M. Nießner, “Rfd-net: Point scene understanding by semantic instance reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 4608–4618.
  4. M. Cao, W. Jia, Y. Li, Z. Lv, L. Li, L. Zheng, and X. Liu, “Fast and robust local feature extraction for 3d reconstruction,” Computers & Electrical Engineering, vol. 71, 2018.
  5. Y. Chang, Y. Tian, J. P. How, and L. Carlone, “Kimera-multi: a system for distributed multi-robot metric-semantic simultaneous localization and mapping,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 210–11 218.
  6. J. Yin, L. Carlone, S. Rosa, and B. Bona, “Graph-based robust localization and mapping for autonomous mobile robotic navigation,” in 2014 IEEE International Conference on Mechatronics and Automation.   IEEE, 2014, pp. 1680–1685.
  7. Y. Gao, L. Su, and H. Liang, “Mc-nerf: Multi-camera neural radiance fields for multi-camera image acquisition systems,” 8 2023.
  8. W. Wang, N. Jadhav, P. Vohs, N. Hughes, M. Mazumder, and S. Gil, “Active rendezvous for multi-robot pose graph optimization using sensing over wi-fi,” in Robotics Research, T. Asfour, E. Yoshida, J. Park, H. Christensen, and O. Khatib, Eds.   Cham: Springer International Publishing, 2022, p. 832.
  9. J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski, A. Kanazawa, and K. Goldberg, “Evo-nerf: Evolving nerf for sequential robot grasping of transparent objects,” in 6th annual conference on robot learning, 2022.
  10. M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwager, “Vision-only robot navigation in a neural radiance world,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4606–4613, 2022.
  11. T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a multiresolution hash encoding,” ACM transactions on graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.
  12. A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time dense monocular slam with neural radiance fields,” 2022.
  13. H. Do, S. Hong, and J. Kim, “Robust loop closure method for multi-robot map fusion by integration of consistency and data similarity,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5701–5708, 2020.
  14. W. Wang, A. Kemmeren, D. Son, J. Alonso-Mora, and S. Gil, “Wi-closure: Reliable and efficient search of inter-robot loop closures using wireless sensing,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.
  15. N. Jadhav, W. Wang, D. Zhang, S. Kumar, and S. Gil, “Toolbox release: A wifi-based relative bearing framework for robotics,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 13 714–13 721.
  16. W. Chen, X. Wang, S. Gao, G. Shang, C. Zhou, Z. Li, C. Xu, and K. Hu, “Overview of multi-robot collaborative slam from the perspective of data fusion,” Machines, vol. 11, no. 6, 2023.
  17. X. Pan, Z. Lai, S. Song, and G. Huang, “Activenerf: Learning where to see with uncertainty estimation,” in European Conference on Computer Vision, 2022.
  18. K. Lee, S. Gupta, S. Kim, B. Makwana, C. Chen, and C. Feng, “So-nerf: Active view planning for nerf using surrogate objectives,” arXiv preprint arXiv:2312.03266, 2023.
  19. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” 2020.
  20. N. Jadhav, W. Wang, D. Zhang, O. Khatib, S. Kumar, and S. Gil, “A wireless signal-based sensing framework for robotics,” The International Journal of Robotics Research, vol. 41, no. 11-12, pp. 955–992, 2022.
  21. J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  22. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   Los Alamitos, CA, USA: IEEE Computer Society, jun 2018, pp. 586–595. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068
Citations (3)

Summary

We haven't generated a summary for this paper yet.