Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Control-Recoverable Added-Noise-based Privacy Scheme for LQ Control in Networked Control Systems (2403.13346v3)

Published 20 Mar 2024 in eess.SY and cs.SY

Abstract: As networked control systems continue to evolve, ensuring the privacy of sensitive data becomes an increasingly pressing concern, especially in situations where the controller is physically separated from the plant. In this paper, we propose a secure control scheme for computing linear quadratic control in a networked control system utilizing two networked controllers, a privacy encoder and a control restorer. Specifically, the encoder generates two state signals blurred with random noise and sends them to the controllers, while the restorer reconstructs the correct control signal. The proposed design effectively preserves the privacy of the control system's state without sacrificing the control performance. We theoretically quantify the privacy-preserving performance in terms of the state estimation error of the controllers and the disclosure probability. Moreover, we extend the proposed privacy-preserving scheme and evaluation method to cases where collusion between two controllers occurs. Finally, we verify the validity of our proposed scheme through simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27, 2019.
  2. L. Wang, X. Cao, H. Zhang, C. Sun, and W. X. Zheng, “Transmission scheduling for privacy-optimal encryption against eavesdropping attacks on remote state estimation,” Automatica, vol. 137, 2022, Art. no.110145.
  3. Y. Wang and H. V. Poor, “Decentralized stochastic optimization with inherent privacy protection,” IEEE Transactions on Automatic Control, vol. 68, no. 4, pp. 2293–2308, 2022.
  4. X. Xu, Y. Xue, L. Qi, Y. Yuan, X. Zhang, T. Umer, and S. Wan, “An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles,” Future Generation Computer Systems, vol. 96, pp. 89–100, 2019.
  5. Y. Zhi, Z. Fu, X. Sun, and J. Yu, “Security and privacy issues of UAV: A survey,” Mobile Networks and Applications, vol. 25, pp. 95–101, 2020.
  6. A. Sultangazin and P. Tabuada, “Symmetries and isomorphisms for privacy in control over the cloud,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 538–549, 2020.
  7. B. Jia, X. Zhang, J. Liu, Y. Zhang, K. Huang, and Y. Liang, “Blockchain-enabled federated learning data protection aggregation scheme with differential privacy and homomorphic encryption in IIoT,” IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4049–4058, 2021.
  8. A. B. Alexandru, K. Gatsis, Y. Shoukry, S. A. Seshia, P. Tabuada, and G. J. Pappas, “Cloud-based quadratic optimization with partially homomorphic encryption,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2357–2364, 2020.
  9. A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: Theory and implementation,” ACM Computing Surveys (Csur), vol. 51, no. 4, pp. 1–35, 2018.
  10. P. C. Weeraddana, G. Athanasiou, C. Fischione, and J. S. Baras, “Per-se privacy preserving solution methods based on optimization,” in Proceedings of the 52nd IEEE Conference on Decision and Control (CDC), 2013, pp. 206–211.
  11. K. Nakano and H. Suzuki, “Known-plaintext attack-based analysis of double random phase encoding using multiple known plaintext–ciphertext pairs,” Applied Optics, vol. 61, no. 30, pp. 9010–9019, 2022.
  12. Y. Wang, J. Lam, and H. Lin, “Consensus of linear multivariable discrete-time multiagent systems: Differential privacy perspective,” IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 13 915–13 926, 2022.
  13. H. Li, S. P. Chinchali, and U. Topcu, “Differentially private timeseries forecasts for networked control,” in Proceedings of the 2023 American Control Conference (ACC), 2023, pp. 3595–3601.
  14. C. Yang, W. Yang, and H. Shi, “Privacy preservation by local design in cooperative networked control systems,” arXiv preprint arXiv:2207.03904, 2022.
  15. Y. Kawano, K. Kashima, and M. Cao, “Modular control under privacy protection: Fundamental trade-offs,” Automatica, vol. 127, 2021, Art. no.109518.
  16. Y. Wang and A. Nedić, “Tailoring gradient methods for differentially-private distributed optimization,” IEEE Transactions on Automatic Control, vol. 69, no. 2, pp. 872–887, 2024.
  17. J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 341–354, 2013.
  18. J. He, L. Cai, and X. Guan, “Preserving data-privacy with added noises: Optimal estimation and privacy analysis,” IEEE Transactions on Information Theory, vol. 64, no. 8, pp. 5677–5690, 2018.
  19. F. A. Yaghmaie, F. Gustafsson, and L. Ljung, “Linear quadratic control using model-free reinforcement learning,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 737–752, 2023.
  20. M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas, “Encrypted control for networked systems: An illustrative introduction and current challenges,” IEEE Control Systems Magazine, vol. 41, no. 3, pp. 58–78, 2021.
  21. M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential privacy techniques for cyber physical systems: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 746–789, 2019.
  22. T. Tanaka, M. Skoglund, H. Sandberg, and K. H. Johansson, “Directed information and privacy loss in cloud-based control,” in Proceedings of the 2017 American Control Conference (ACC), 2017, pp. 1666–1672.
  23. K. Yazdani, A. Jones, K. Leahy, and M. Hale, “Differentially private LQ control,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 1061–1068, 2023.
  24. M. S. Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo, “Towards encrypted MPC for linear constrained systems,” IEEE Control Systems Letters, vol. 2, no. 2, pp. 195–200, 2017.
  25. C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and N. Aaraj, “Survey on fully homomorphic encryption, theory, and applications,” Proceedings of the IEEE, vol. 110, no. 10, pp. 1572–1609, 2022.
  26. C. Wang, K. Ren, and J. Wang, “Secure optimization computation outsourcing in cloud computing: A case study of linear programming,” IEEE Transactions on Computers, vol. 65, no. 1, pp. 216–229, 2015.
  27. B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B. Naghibi-Sistani, “Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics,” Automatica, vol. 50, no. 4, pp. 1167–1175, 2014.

Summary

We haven't generated a summary for this paper yet.