Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning for Fast Adaptation in Intent Inferral on a Robotic Hand Orthosis for Stroke (2403.13147v1)

Published 19 Mar 2024 in cs.RO

Abstract: We propose MetaEMG, a meta-learning approach for fast adaptation in intent inferral on a robotic hand orthosis for stroke. One key challenge in machine learning for assistive and rehabilitative robotics with disabled-bodied subjects is the difficulty of collecting labeled training data. Muscle tone and spasticity often vary significantly among stroke subjects, and hand function can even change across different use sessions of the device for the same subject. We investigate the use of meta-learning to mitigate the burden of data collection needed to adapt high-capacity neural networks to a new session or subject. Our experiments on real clinical data collected from five stroke subjects show that MetaEMG can improve the intent inferral accuracy with a small session- or subject-specific dataset and very few fine-tuning epochs. To the best of our knowledge, we are the first to formulate intent inferral on stroke subjects as a meta-learning problem and demonstrate fast adaptation to a new session or subject for controlling a robotic hand orthosis with EMG signals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in International conference on machine learning.   PMLR, 2017, pp. 1126–1135.
  2. J. Xu, C. Meeker, A. Chen, L. Winterbottom, M. Fraser, S. Park, L. M. Weber, M. Miya, D. Nilsen, J. Stein, et al., “Adaptive semi-supervised intent inferral to control a powered hand orthosis for stroke,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 8097–8103.
  3. C. Meeker, S. Park, L. Bishop, J. Stein, and M. Ciocarlie, “Emg pattern classification to control a hand orthosis for functional grasp assistance after stroke,” in 2017 international conference on rehabilitation robotics (ICORR).   IEEE, 2017, pp. 1203–1210.
  4. I. Batzianoulis, N. E. Krausz, A. M. Simon, L. Hargrove, and A. Billard, “Decoding the grasping intention from electromyography during reaching motions,” Journal of neuroengineering and rehabilitation, vol. 15, no. 1, pp. 1–13, 2018.
  5. J. W. Sensinger, B. A. Lock, and T. A. Kuiken, “Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 3, pp. 270–278, 2009.
  6. S. Amsüss, P. M. Goebel, N. Jiang, B. Graimann, L. Paredes, and D. Farina, “Self-correcting pattern recognition system of surface emg signals for upper limb prosthesis control,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 4, pp. 1167–1176, 2013.
  7. X. Chen, D. Zhang, and X. Zhu, “Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control,” Journal of neuroengineering and rehabilitation, vol. 10, no. 1, pp. 1–13, 2013.
  8. H. Zhang, Y. Zhao, F. Yao, L. Xu, P. Shang, and G. Li, “An adaptation strategy of using lda classifier for emg pattern recognition,” in 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC).   IEEE, 2013, pp. 4267–4270.
  9. J. He, D. Zhang, and X. Zhu, “Adaptive pattern recognition of myoelectric signal towards practical multifunctional prosthesis control,” in Intelligent Robotics and Applications: 5th International Conference, ICIRA 2012, Montreal, QC, Canada, October 3-5, 2012, Proceedings, Part I 5.   Springer, 2012, pp. 518–525.
  10. D. Buongiorno, G. D. Cascarano, A. Brunetti, I. De Feudis, and V. Bevilacqua, “A survey on deep learning in electromyographic signal analysis,” in Intelligent Computing Methodologies, D.-S. Huang, Z.-K. Huang, and A. Hussain, Eds.   Cham: Springer International Publishing, 2019, pp. 751–761.
  11. K.-H. Park and S.-W. Lee, “Movement intention decoding based on deep learning for multiuser myoelectric interfaces,” in 2016 4th International Winter Conference on Brain-Computer Interface (BCI), 2016, pp. 1–2.
  12. A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “A deep transfer learning approach to reducing the effect of electrode shift in emg pattern recognition-based control,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 2, pp. 370–379, 2019.
  13. T. Sun, J. Libby, J. Rizzo, and S. F. Atashzar, “Deep augmentation for electrode shift compensation in transient high-density semg: towards application in neurorobotics,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 6148–6153.
  14. X. Zhai, B. Jelfs, R. H. Chan, and C. Tin, “Self-recalibrating surface emg pattern recognition for neuroprosthesis control based on convolutional neural network,” Frontiers in neuroscience, vol. 11, p. 379, 2017.
  15. A. L. Edwards, M. R. Dawson, J. S. Hebert, C. Sherstan, R. S. Sutton, K. M. Chan, and P. M. Pilarski, “Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching,” Prosthetics and orthotics international, vol. 40, no. 5, pp. 573–581, 2016.
  16. J. Liu, X. Sheng, D. Zhang, N. Jiang, and X. Zhu, “Towards zero retraining for myoelectric control based on common model component analysis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 4, pp. 444–454, 2015.
  17. K. Proroković, M. Wand, and J. Schmidhuber, “Meta-learning for recalibration of emg-based upper limb prostheses,” in 4th Lifelong Machine Learning Workshop at ICML 2020, 2020.
  18. N. Banluesombatkul, P. Ouppaphan, P. Leelaarporn, P. Lakhan, B. Chaitusaney, N. Jaimchariyatam, E. Chuangsuwanich, W. Chen, H. Phan, N. Dilokthanakul, et al., “Metasleeplearner: A pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 1949–1963, 2020.
  19. K. Proroković, M. Wand, T. Schultz, and J. Schmidhuber, “Adaptation of an emg-based speech recognizer via meta-learning,” in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2019, pp. 1–5.
  20. S. Park, C. Meeker, L. M. Weber, L. Bishop, J. Stein, and M. Ciocarlie, “Multimodal sensing and interaction for a robotic hand orthosis,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 315–322, 2018.
  21. A. Chen, L. Winterbottom, S. Park, J. Xu, D. M. Nilsen, J. Stein, and M. Ciocarlie, “Thumb stabilization and assistance in a robotic hand orthosis for post-stroke hemiparesis,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8276–8282, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.