Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phenomenology of Horndeski Gravity under Positivity Bounds (2403.13096v2)

Published 19 Mar 2024 in astro-ph.CO, gr-qc, and hep-th

Abstract: A set of conditions that any effective field theory needs to satisfy in order to allow for the existence of a viable UV completion has recently gained attention in the cosmological context under the name of $\textit{positivity bounds}$. In this paper we revisit the derivation of such bounds for Horndeski gravity and translate them into a complete set of viability conditions in the language of effective field theory of dark energy. We implement the latter into $\texttt{EFTCAMB}$ and explore the large scale structure phenomenology of Horndeski gravity under positivity bounds. We build a statistically significant sample of viable Horndeski models, and derive the corresponding predictions for the background evolution, in terms of $w_{\rm DE}$, and the dynamics of linear perturbations, in terms of the phenomenological functions $\mu$ and $\Sigma$, associated to clustering and weak lensing, respectively. We find that the addition of positivity bounds to the traditional no-ghost and no-gradient conditions considerably tightens the theoretical constraints on all these functions. The most significant feature is a strengthening of the correlation $\mu\simeq\Sigma$, and a related tight constraint on the luminal speed of gravitational waves $c2_T\simeq1$. In anticipation of a more complete formulation of positivity conditions in cosmology, this work demonstrates the strong potential of such bounds in shaping the viable parameter space of scalar-tensor theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. S. Weinberg, Phys. Lett. B 91, 51 (1980).
  2. K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).
  3. R. Penco,   (2020), arXiv:2006.16285 [hep-th] .
  4. S. Weinberg, Eur. Phys. J. H 46, 6 (2021), arXiv:2101.04241 [hep-th] .
  5. M. Baumgart et al., in Snowmass 2021 (2022) arXiv:2210.03199 [hep-ph] .
  6. S. Weinberg, Phys. Rev. D 77, 123541 (2008), arXiv:0804.4291 [hep-th] .
  7. L. Senatore and M. Zaldarriaga, JHEP 04, 024 (2012), arXiv:1009.2093 [hep-th] .
  8. M. P. Hertzberg, Phys. Rev. D 89, 043521 (2014), arXiv:1208.0839 [astro-ph.CO] .
  9. F. Piazza and F. Vernizzi, Class. Quant. Grav. 30, 214007 (2013), arXiv:1307.4350 [hep-th] .
  10. N. Frusciante and L. Perenon, Phys. Rept. 857, 1 (2020), arXiv:1907.03150 [astro-ph.CO] .
  11. C. Cheung and G. N. Remmen, JHEP 04, 002 (2016), arXiv:1601.04068 [hep-th] .
  12. C. Cheung and G. N. Remmen, Phys. Rev. Lett. 118, 051601 (2017), arXiv:1608.02942 [hep-th] .
  13. S. Melville and J. Noller, Phys. Rev. D 101, 021502 (2020), arXiv:1904.05874 [astro-ph.CO] .
  14. G. Ye and Y.-S. Piao, Eur. Phys. J. C 80, 421 (2020), arXiv:1908.08644 [hep-th] .
  15. J. Kennedy and L. Lombriser, Phys. Rev. D 102, 044062 (2020), arXiv:2003.05318 [gr-qc] .
  16. C. de Rham and A. J. Tolley, Phys. Rev. D 102, 084048 (2020), arXiv:2007.01847 [hep-th] .
  17. T. Grall and S. Melville, Phys. Rev. D 105, L121301 (2022), arXiv:2102.05683 [hep-th] .
  18. S. Melville and J. Noller, JCAP 06, 031 (2022), arXiv:2202.01222 [hep-th] .
  19. H. Xu and S.-Y. Zhou, JCAP 11, 076 (2023), arXiv:2306.06639 [hep-th] .
  20. http://camb.info.
  21. G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
  22. G. W. Horndeski and A. Silvestri, Int. J. Theor. Phys. 63, 38 (2024), arXiv:2402.07538 [gr-qc] .
  23. http://www.euclid-ec.org.
  24. http://www.lsst.org.
  25. A. De Felice and S. Tsujikawa, Phys. Rev. D 84, 124029 (2011), arXiv:1008.4236 [hep-th] .
  26. M. Hohmann, Phys. Rev. D 92, 064019 (2015), arXiv:1506.04253 [gr-qc] .
  27. J. Bloomfield, JCAP 1312, 044 (2013), arXiv:1304.6712 [astro-ph.CO] .
  28. B. Jain and P. Zhang, Phys. Rev. D 78, 063503 (2008), arXiv:0709.2375 [astro-ph] .
  29. E. Bertschinger and P. Zukin, Phys. Rev. D 78, 024015 (2008), arXiv:0801.2431 [astro-ph] .
  30. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020a), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  31. T. M. C. Abbott et al. (DES), Phys. Rev. D 107, 083504 (2023), arXiv:2207.05766 [astro-ph.CO] .
  32. N. Aghanim et al. (Planck),   (2018), arXiv:1807.06209 [astro-ph.CO] .
  33. J. Torrado and A. Lewis, JCAP 05, 057 (2021), arXiv:2005.05290 [astro-ph.IM] .
  34. B. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
  35. D. A. Coulter et al., Science 358, 1556 (2017), arXiv:1710.05452 [astro-ph.HE] .
  36. J. M. Ezquiaga and M. Zumalacarregui, Phys. Rev. Lett. 119, 251304 (2017), arXiv:1710.05901 [astro-ph.CO] .
  37. P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017), arXiv:1710.05877 [astro-ph.CO] .
  38. D. M. Scolnic et al. (Pan-STARRS1), Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO] .
  39. L. Pogosian and A. Silvestri, Phys. Rev. D94, 104014 (2016), arXiv:1606.05339 [astro-ph.CO] .
  40. E. Bellini and I. Sawicki, JCAP 1407, 050 (2014), arXiv:1404.3713 [astro-ph.CO] .
  41. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A8 (2020b), arXiv:1807.06210 [astro-ph.CO] .
  42. S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.