Subgoal Diffuser: Coarse-to-fine Subgoal Generation to Guide Model Predictive Control for Robot Manipulation (2403.13085v1)
Abstract: Manipulation of articulated and deformable objects can be difficult due to their compliant and under-actuated nature. Unexpected disturbances can cause the object to deviate from a predicted state, making it necessary to use Model-Predictive Control (MPC) methods to plan motion. However, these methods need a short planning horizon to be practical. Thus, MPC is ill-suited for long-horizon manipulation tasks due to local minima. In this paper, we present a diffusion-based method that guides an MPC method to accomplish long-horizon manipulation tasks by dynamically specifying sequences of subgoals for the MPC to follow. Our method, called Subgoal Diffuser, generates subgoals in a coarse-to-fine manner, producing sparse subgoals when the task is easily accomplished by MPC and more dense subgoals when the MPC method needs more guidance. The density of subgoals is determined dynamically based on a learned estimate of reachability, and subgoals are distributed to focus on challenging parts of the task. We evaluate our method on two robot manipulation tasks and find it improves the planning performance of an MPC method, and also outperforms prior diffusion-based methods.
- G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive driving with model predictive path integral control,” in 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 1433–1440.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with diffusion for flexible behavior synthesis,” arXiv preprint arXiv:2205.09991, 2022.
- A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal, “Is conditional generative modeling all you need for decision-making?” arXiv preprint arXiv:2211.15657, 2022.
- C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.
- W. Li, X. Wang, B. Jin, and H. Zha, “Hierarchical diffusion for offline decision making,” 2023.
- C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 479–36 494, 2022.
- J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet, et al., “Imagen video: High definition video generation with diffusion models,” arXiv preprint arXiv:2210.02303, 2022.
- T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta, B. Ichter, et al., “Scaling robot learning with semantically imagined experience,” arXiv preprint arXiv:2302.11550, 2023.
- H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar, “Roboagent: Generalization and efficiency in robot manipulation via semantic augmentations and action chunking,” arXiv preprint arXiv:2309.01918, 2023.
- J. Urain, N. Funk, J. Peters, and G. Chalvatzaki, “Se (3)-diffusionfields: Learning smooth cost functions for joint grasp and motion optimization through diffusion,” in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023, pp. 5923–5930.
- I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-scale diffusion models to robotics,” IEEE Robotics and Automation Letters, 2023.
- W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion: Object-centric diffusion for semantic rearrangement of novel objects,” arXiv preprint arXiv:2211.04604, 2022.
- T. Power, R. Soltani-Zarrin, S. Iba, and D. Berenson, “Sampling constrained trajectories using composable diffusion models,” in IROS 2023 Workshop on Differentiable Probabilistic Robotics: Emerging Perspectives on Robot Learning, 2023.
- J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion planning diffusion: Learning and planning of robot motions with diffusion models,” arXiv preprint arXiv:2308.01557, 2023.
- S. Huang, Z. Wang, P. Li, B. Jia, T. Liu, Y. Zhu, W. Liang, and S.-C. Zhu, “Diffusion-based generation, optimization, and planning in 3d scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 16 750–16 761.
- T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, et al., “Imitating human behaviour with diffusion models,” arXiv preprint arXiv:2301.10677, 2023.
- M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-conditioned imitation learning using score-based diffusion policies,” arXiv preprint arXiv:2304.02532, 2023.
- S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning of long-horizon tasks via visual subgoal generation,” arXiv preprint arXiv:1909.05829, 2019.
- B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the replay buffer: Bridging planning and reinforcement learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.
- S. Nasiriany, V. Pong, S. Lin, and S. Levine, “Planning with goal-conditioned policies,” Advances in Neural Information Processing Systems, vol. 32, 2019.
- K. Fang, P. Yin, A. Nair, and S. Levine, “Planning to practice: Efficient online fine-tuning by composing goals in latent space,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 4076–4083.
- X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan, “Diffskill: Skill abstraction from differentiable physics for deformable object manipulations with tools,” arXiv preprint arXiv:2203.17275, 2022.
- T. Power and D. Berenson, “Variational inference mpc using normalizing flows and out-of-distribution projection,” arXiv preprint arXiv:2205.04667, 2022.
- T. Wang and J. Ba, “Exploring model-based planning with policy networks,” arXiv preprint arXiv:1906.08649, 2019.
- J. Sacks and B. Boots, “Learning to optimize in model predictive control,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022, pp. 10 549–10 556.
- L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, “Mpc-mpnet: Model-predictive motion planning networks for fast, near-optimal planning under kinodynamic constraints,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4496–4503, 2021.
- J. Carius, R. Ranftl, F. Farshidian, and M. Hutter, “Constrained stochastic optimal control with learned importance sampling: A path integral approach,” The International Journal of Robotics Research, vol. 41, no. 2, pp. 189–209, 2022.
- T. Lai, W. Zhi, T. Hermans, and F. Ramos, “Parallelised diffeomorphic sampling-based motion planning,” in Conference on Robot Learning. PMLR, 2022, pp. 81–90.
- B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for robot motion planning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.
- J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International conference on machine learning. PMLR, 2015, pp. 2256–2265.
- M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient langevin dynamics,” in Proceedings of the 28th international conference on machine learning (ICML-11). Citeseer, 2011, pp. 681–688.
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.
- J. Hejna, J. Gao, and D. Sadigh, “Distance weighted supervised learning for offline interaction data,” arXiv preprint arXiv:2304.13774, 2023.
- E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2012, pp. 5026–5033.
- M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” Advances in neural information processing systems, vol. 30, 2017.
- Y. Wang, D. McConachie, and D. Berenson, “Tracking partially-occluded deformable objects while enforcing geometric constraints,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 14 199–14 205.