Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong coupling and single-photon nonlinearity in free-electron quantum optics (2403.13071v2)

Published 19 Mar 2024 in quant-ph

Abstract: The observation that free electrons can interact coherently with quantized electromagnetic fields and matter systems has led to a plethora of proposals leveraging the unique quantum properties of free electrons. At the heart of these proposals lies the assumption of a strong quantum interaction between a flying free electron and a photonic mode. However, existing schemes are intrinsically limited by electron diffraction, which puts an upper bound on the interaction length and therefore the quantum coupling strength. Here, we propose the use of "free-electron fibers'': effectively one-dimensional photonic systems where free electrons co-propagate with two guided modes. The first mode applies a ponderomotive trap to the free electron, effectively lifting the limitations due to electron diffraction. The second mode strongly couples to the guided free electron, with an enhanced coupling that is orders of magnitude larger than previous designs. Moreover, the extended interaction lengths enabled by our scheme allows for strong single-photon nonlinearities mediated by free electrons. We predict a few interesting observable quantum effects in our system, such as deterministic single-photon emission and complex, nonlinear multimode dynamics. Our proposal paves the way towards the realization of many anticipated effects in free-electron quantum optics, such as non-Gaussian light generation, deterministic single photon emission, and quantum gates controlled by free-electron--photon interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. O. Kfir, “Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime,” Physical Review Letters, vol. 123, p. 103602, 9 2019.
  2. V. Di Giulio, M. Kociak, and F. J. G. de Abajo, “Probing quantum optical excitations with fast electrons,” Optica, vol. 6, p. 1524, 12 2019.
  3. A. Gover and A. Yariv, “Free-Electron-Bound-Electron Resonant Interaction,” Physical Review Letters, vol. 124, p. 064801, 2 2020.
  4. A. Ben Hayun, O. Reinhardt, J. Nemirovsky, A. Karnieli, N. Rivera, and I. Kaminer, “Shaping quantum photonic states using free electrons,” Science Advances, vol. 7, pp. 4270–4280, 3 2021.
  5. R. Ruimy, A. Gorlach, C. Mechel, N. Rivera, and I. Kaminer, “Toward Atomic-Resolution Quantum Measurements with Coherently Shaped Free Electrons,” Physical Review Letters, vol. 126, p. 233403, 6 2021.
  6. Z. Zhao, X. Q. Sun, and S. Fan, “Quantum Entanglement and Modulation Enhancement of Free-Electron-Bound-Electron Interaction,” Physical Review Letters, vol. 126, p. 233402, 6 2021.
  7. R. Dahan, A. Gorlach, U. Haeusler, A. Karnieli, O. Eyal, P. Yousefi, M. Segev, A. Arie, G. Eisenstein, P. Hommelhoff, and I. Kaminer, “Imprinting the quantum statistics of photons on free electrons,” Science, vol. 373, 9 2021.
  8. A. Feist, G. Huang, G. Arend, Y. Yang, J. W. Henke, A. S. Raja, F. J. Kappert, R. N. Wang, H. Lourenço-Martins, Z. Qiu, J. Liu, O. Kfir, T. J. Kippenberg, and C. Ropers, “Cavity-mediated electron-photon pairs,” Science, vol. 377, pp. 777–780, 8 2022.
  9. R. Dahan, G. Baranes, A. Gorlach, R. Ruimy, N. Rivera, and I. Kaminer, “Creation of Optical Cat and GKP States Using Shaped Free Electrons,” Physical Review X, vol. 13, p. 031001, 6 2023.
  10. Y. Adiv, H. Hu, S. Tsesses, R. Dahan, K. Wang, Y. Kurman, A. Gorlach, H. Chen, X. Lin, G. Bartal, I. Kaminer, and E. Viterbi, “Observation of 2D Cherenkov Radiation,” Physical Review X, vol. 13, p. 011002, 1 2023.
  11. A. Karnieli and S. Fan, “Jaynes-Cummings interaction between low-energy free electrons and cavity photons,” Science advances, vol. 9, p. eadh2425, 6 2023.
  12. O. Reinhardt, C. Mechel, M. Lynch, and I. Kaminer, “Free-Electron Qubits,” Annalen der Physik, vol. 533, p. 2000254, 2 2021.
  13. M. V. Tsarev, A. Ryabov, and P. Baum, “Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals,” Physical Review Research, vol. 3, p. 043033, 12 2021.
  14. G. Baranes, R. Ruimy, A. Gorlach, and I. Kaminer, “Free electrons can induce entanglement between photons,” npj Quantum Information 2022 8:1, vol. 8, pp. 1–9, 3 2022.
  15. A. Karnieli, S. Tsesses, R. Yu, N. Rivera, A. Arie, I. Kaminer, and S. Fan, “Universal and ultrafast quantum computation based on free-electron-polariton blockade,” PRX Quantum, vol. 5, p. 010339, 3 2024.
  16. G. Baranes, S. Even-Haim, R. Ruimy, A. Gorlach, R. Dahan, A. A. Diringer, S. Hacohen-Gourgy, and I. Kaminer, “Free-electron interactions with photonic GKP states: Universal control and quantum error correction,” Phys. Rev. Research, vol. 5, p. 043271, 3 2023.
  17. A. Gorlach, A. Karnieli, R. Dahan, E. Cohen, A. Pe’er, and I. Kaminer, “Ultrafast non-destructive measurement of the quantum state of light using free electrons,” arXiv:2012.12069, 12 2020.
  18. A. Karnieli, S. Tsesses, R. Yu, N. Rivera, Z. Zhao, A. Arie, S. Fan, and I. Kaminer, “Quantum sensing of strongly coupled light-matter systems using free electrons,” Science advances, vol. 9, p. eadd2349, 1 2023.
  19. T. Bucher, H. Nahari, H. H. Sheinfux, R. Ruimy, A. Niedermayr, R. Dahan, Q. Yan, Y. Adiv, M. Yannai, J. Chen, Y. Kurman, S. T. Park, D. J. Masiel, E. Janzen, J. H. Edgar, F. Carbone, G. Bartal, S. Tsesses, F. H. L. Koppens, G. M. Vanacore, and I. Kaminer, “Coherently amplified ultrafast imaging in a free-electron interferometer,” arXiv:2305.04877, 5 2023.
  20. T. Bucher, R. Ruimy, S. Tsesses, R. Dahan, G. Bartal, G. M. Vanacore, and I. Kaminer, “Free-Electron Ramsey-Type Interferometry for Enhanced Amplitude and Phase imaging of Nearfields,” Sci. Adv., vol. 9, p. eadi5729, 5 2023.
  21. V. Di Giulio and F. J. García De Abajo, “Optical-cavity mode squeezing by free electrons,” Nanophotonics, vol. 11, pp. 4659–4670, 12 2022.
  22. Y. Pan, B. Zhang, and D. Podolsky, “Low-energy Free-electron Rabi oscillation and its applications,” arXiv:2304.12174, 4 2023.
  23. D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nature Photonics 2014 8:9, vol. 8, pp. 685–694, 8 2014.
  24. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, “Observation of Frequency-Locked Coherent Terahertz Smith-Purcell Radiation,” Phys. Rev. Lett., vol. 94, p. 054803, 2005.
  25. M. Shentcis, A. K. Budniak, X. Shi, R. Dahan, Y. Kurman, M. Kalina, H. Herzig Sheinfux, M. Blei, M. K. Svendsen, Y. Amouyal, S. Tongay, K. S. Thygesen, F. H. Koppens, E. Lifshitz, F. J. García de Abajo, L. J. Wong, and I. Kaminer, “Tunable free-electron X-ray radiation from van der Waals materials,” Nature Photonics, vol. 14, pp. 686–692, 11 2020.
  26. A. Polman, M. Kociak, and F. J. García de Abajo, “Electron-beam spectroscopy for nanophotonics,” Nature Materials, vol. 18, p. 1158–1171, 7 2019.
  27. F. J. García de Abajo and V. Di Giulio, “Optical Excitations with Electron Beams: Challenges and Opportunities,” ACS Photonics, vol. 17, p. 36, 4 2021.
  28. C. Roques-Carmes, S. E. Kooi, Y. Yang, N. Rivera, P. D. Keathley, J. D. Joannopoulos, S. G. Johnson, I. Kaminer, K. K. Berggren, and M. Soljačić, “Free-electron–light interactions in nanophotonics,” Applied Physics Reviews, vol. 10, p. 011303, 1 2023.
  29. M. Bézard, I. S. H. Mohand, L. Ruggierio, A. L. Roux, Y. Auad, P. Baroux, L. H. G. Tizei, X. Chécoury, and M. Kociak, “High efficiency coupling of free electrons to sub-$\lambda^3$ modal volume, high-Q photonic cavities,” arXiv:2307.15556, 7 2023.
  30. G. Huang, N. J. Engelsen, O. Kfir, C. Ropers, and T. J. Kippenberg, “Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits,” PRX Quantum, vol. 4, p. 020351, 6 2023.
  31. Y. D’Mello, S. Bernal, X. Shi, I. Kaminer, R. Dahan, and D. V. Plant, “Efficient coupling between free electrons and the supermode of a silicon slot waveguide,” Optics Express, Vol. 31, Issue 12, pp. 19443-19452, vol. 31, pp. 19443–19452, 6 2023.
  32. S. Tsesses, G. Bartal, and I. Kaminer, “Light generation via quantum interaction of electrons with periodic nanostructures,” Physical Review A, vol. 95, p. 013832, 1 2017.
  33. S. Huang, R. Duan, N. Pramanik, J. Scott Herrin, C. Boothroyd, Z. Liu, . Liang, and J. Wong, “Quantum recoil in free-electron interactions with atomic lattices,” Nature Photonics 2023, pp. 1–7, 1 2023.
  34. B. J. Brenny, T. Coenen, and A. Polman, “Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals,” Journal of Applied Physics, vol. 115, p. 244307, 6 2014.
  35. Q. Yang, J. He, J. Qiu, J. Zhang, Z. Ye, J. Lou, Y. Shen, L. Tong, and L. Hu, “Photonic nanowires directly drawn from bulk glasses,” Optics Express, Vol. 14, Issue 1, pp. 82-87, vol. 14, pp. 82–87, 1 2006.
  36. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, Y. Ohishi, S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. J. St Russell, M. W. Mason, D. I. Yeom, E. C. Mägi, M. R. E Lamont, M. A. F Roelens, L. Fu, and B. J. Eggleton, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Optics Express, Vol. 20, Issue 2, pp. 1141-1150, vol. 20, pp. 1141–1150, 1 2012.
  37. Y. Ohishi, M. Liao, X. Xue, T. Cheng, Z. Duan, T. Suzuki, and W. Gao, “Flat and broadband supercontinuum generation by four-wave mixing in a highly nonlinear tapered microstructured fiber,” Optics Express, Vol. 20, Issue 26, pp. B574-B580, vol. 20, pp. B574–B580, 12 2012.
  38. A. Goban, C. L. Hung, J. D. Hood, S. P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for Atoms Trapped along a Photonic Crystal Waveguide,” Physical Review Letters, vol. 115, p. 063601, 8 2015.
  39. G. Epple, K. S. Kleinbach, T. G. Euser, N. Y. Joly, T. Pfau, P. S. J. Russell, and R. Löw, “Rydberg atoms in hollow-core photonic crystal fibres,” Nature Communications 2014 5:1, vol. 5, pp. 1–5, 6 2014.
  40. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 83, p. 033806, 3 2011.
  41. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, “Optical potential for atom guidance in a cylindrical-core hollow fiber,” Optics Communications, vol. 115, pp. 57–64, 3 1995.
  42. R. Zimmermann, M. Seidling, and P. Hommelhoff, “Charged particle guiding and beam splitting with auto-ponderomotive potentials on a chip,” Nature Communications 2021 12:1, vol. 12, pp. 1–6, 1 2021.
  43. J. Hammer, S. Thomas, P. Weber, and P. Hommelhoff, “Microwave chip-based beam splitter for low-energy guided electrons,” Physical Review Letters, vol. 114, p. 254801, 6 2015.
  44. L. Schächter and W. D. Kimura, “Electron beam guiding by a laser Bessel beam,” Physical Review Accelerators and Beams, vol. 23, p. 081301, 8 2020.
  45. R. J. England, R. J. Noble, K. Bane, D. H. Dowell, C. K. Ng, J. E. Spencer, S. Tantawi, Z. Wu, R. L. Byer, E. Peralta, K. Soong, C. M. Chang, B. Montazeri, S. J. Wolf, B. Cowan, J. Dawson, W. Gai, P. Hommelhoff, Y. C. Huang, C. Jing, C. McGuinness, R. B. Palmer, B. Naranjo, J. Rosenzweig, G. Travish, A. Mizrahi, L. Schachter, C. Sears, G. R. Werner, and R. B. Yoder, “Dielectric laser accelerators,” Reviews of Modern Physics, vol. 86, pp. 1337–1389, 12 2014.
  46. A. Hanuka and L. Schächter, “Trapping of sub-relativistic particles in laser driven accelerators,” Physics of Plasmas, vol. 24, p. 123116, 12 2017.
  47. R. Shiloh, N. Schönenberger, N. Schönenberger, Y. Adiv, Y. Adiv, R. Ruimy, R. Ruimy, A. Karnieli, A. Karnieli, A. Karnieli, T. Hughes, R. J. England, K. J. Leedle, D. S. Black, Z. Zhao, P. Musumeci, R. L. Byer, A. Arie, I. Kaminer, I. Kaminer, P. Hommelhoff, and P. Hommelhoff, “Miniature light-driven nanophotonic electron acceleration and control,” Advances in Optics and Photonics, Vol. 14, Issue 4, pp. 862-932, vol. 14, pp. 862–932, 12 2022.
  48. R. Shiloh, J. Illmer, T. Chlouba, P. Yousefi, N. Schönenberger, U. Niedermayer, A. Mittelbach, and P. Hommelhoff, “Electron phase-space control in photonic chip-based particle acceleration,” Nature 2021 597:7877, vol. 597, pp. 498–502, 9 2021.
  49. F. J. García de Abajo, “Optical excitations in electron microscopy,” Reviews of Modern Physics, vol. 82, no. 1, pp. 209–275, 2010.
  50. A. Yi, C. Wang, L. Zhou, Y. Zhu, S. Zhang, T. You, J. Zhang, and X. Ou, “Silicon carbide for integrated photonics,” Applied Physics Reviews, vol. 9, p. 31302, 9 2022.
  51. H. Tezuka, Y. Ohishi, X. Xue, T. Cheng, M. Matsumoto, T. Suzuki, T. H. Tuan, and K. Nagasaka, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1um in a chalcogenide step-index fiber,” Optics Letters, Vol. 41, Issue 9, pp. 2117-2120, vol. 41, pp. 2117–2120, 5 2016.
  52. A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakinskiy, and A. N. Poddubny, “Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations,” Reviews of Modern Physics, vol. 95, p. 015002, 1 2023.
  53. M. Jankowski, R. Yanagimoto, E. Ng, R. Hamerly, T. P. McKenna, H. Mabuchi, and M. M. Fejer, “Ultrafast second-order nonlinear photonics – from classical physics to non-Gaussian quantum dynamics,” arXiv:2401.06265, 1 2024.
  54. Y. Yang, C. Roques-Carmes, S. E. Kooi, H. Tang, J. Beroz, E. Mazur, I. Kaminer, J. D. Joannopoulos, and M. Soljačić, “Photonic flatband resonances for free-electron radiation,” Nature 2023 613:7942, vol. 613, pp. 42–47, 1 2023.
  55. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 2003 420:6916, vol. 420, pp. 650–653, 12 2002.
  56. Princeton University Press, 2008.
  57. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Advances in Optics and Photonics, Vol. 1, Issue 1, pp. 58-106, vol. 1, pp. 58–106, 1 2009.
  58. V. V. Dorofeev, M. P. Smayev, V. V. Koltashev, Y. P. Yatsenko, and A. G. Okhrimchuk, “Nonlinear properties of the depressed cladding single mode TeO2-WO3-Bi2O3 channel waveguide fabricated by direct laser writing,” Optical Materials Express, Vol. 8, Issue 11, pp. 3424-3437, vol. 8, pp. 3424–3437, 11 2018.
  59. G. L. DesAutels, C. Brewer, S. Juhl, P. Powers, M. Walker, S. Ristich, M. Whitaker, and M. Finet, “Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials,” JOSA B, Vol. 25, Issue 1, pp. 60-66, vol. 25, pp. 60–66, 1 2008.
  60. J. Cardenas, M. Yu, A. L. Gaeta, Y. Okawachi, M. Lipson, R. K. W. Lau, C. B. Poitras, and A. Dutt, “Optical nonlinearities in high-confinement silicon carbide waveguides,” Optics Letters, Vol. 40, Issue 17, pp. 4138-4141, vol. 40, pp. 4138–4141, 9 2015.
  61. X. Gao, B. Zhen, M. Soljačić, H. Chen, and C. W. Hsu, “Bound States in the Continuum in Fiber Bragg Gratings,” ACS Photonics, vol. 6, pp. 2996–3002, 11 2019.
  62. Govind P. Agrawal, Fiber-optic communication systems. fourth edition ed., 2021.
  63. A. Karnieli, N. Rivera, A. Arie, and I. Kaminer, “The coherence of light is fundamentally tied to the quantum coherence of the emitting particle,” Science Advances, vol. 7, p. eabf8096, 4 2021.
  64. O. L. Krivanek, N. Dellby, J. A. Hachtel, J. C. Idrobo, M. T. Hotz, B. Plotkin-Swing, N. J. Bacon, A. L. Bleloch, G. J. Corbin, M. V. Hoffman, C. E. Meyer, and T. C. Lovejoy, “Progress in ultrahigh energy resolution EELS,” Ultramicroscopy, vol. 203, pp. 60–67, 8 2019.
  65. M. Yannai, Y. Adiv, R. Dahan, K. Wang, A. Gorlach, N. Rivera, T. Fishman, M. Krüger, and I. Kaminer, “Lossless Monochromator in an Ultrafast Electron Microscope Using Near-Field THz Radiation,” Physical Review Letters, vol. 131, p. 145002, 10 2023.
  66. G. J. De Valcárcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 74, p. 061801, 12 2006.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com