Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observation of the anomalous Nernst effect in altermagnetic candidate Mn5Si3 (2403.12929v1)

Published 19 Mar 2024 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: The anomalous Nernst effect generates transverse voltage to the applied thermal gradient in magnetically ordered systems. The effect was previously considered excluded in compensated magnetic materials with collinear ordering. However, in the recently identified class of compensated magnetic materials, dubbed altermagnets, time-reversal symmetry breaking in the electronic band structure makes the presence of the anomalous Nernst effect possible despite the collinear spin arrangement. In this work, we investigate epitaxial Mn5Si3 thin films known to be an altermagnetic candidate. We show that the material manifests a sizable anomalous Nernst coefficient despite the small net magnetization of the films. The measured magnitudes of the anomalous Nernst coefficient reach a scale of microVolts per Kelvin. We support our magneto-thermoelectric measurements by density-functional theory calculations of the material's spin-split electronic structure, which allows for the finite Berry curvature in the reciprocal space. Furthermore, we present our calculations of the intrinsic Berry-curvature Nernst conductivity, which agree with our experimental observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. H. Chen, Q. Niu, and A. H. MacDonald, Anomalous hall effect arising from noncollinear antiferromagnetism, Physical review letters 112, 017205 (2014).
  2. J. Kübler and C. Felser, Non-collinear antiferromagnets and the anomalous Hall effect, Europhysics Letters 108, 67001 (2014).
  3. S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527, 212 (2015).
  4. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging research landscape of altermagnetism, Physical Review X 12, 040501 (2022).
  5. P. Brown and J. Forsyth, Antiferromagnetism in Mn55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPTSi33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT: the magnetic structure of the AF2 phase at 70 K, Journal of Physics: Condensed Matter 7, 7619 (1995).
  6. COMSOL Multiphysics, COMSOL Multiphysics v. 6.0, www.comsol.com.
  7. C. Zener, Classical theory of the temperature dependence of magnetic anisotropy energy, Physical Review 96, 1335 (1954).
  8. Y. Shapira, S. Foner, and A. Misetich, Magnetic-phase diagram of MnF2 from ultrasonic and differential magnetization measurements, Physical Review Letters 23, 98 (1969).
  9. J. Xu, W. A. Phelan, and C.-L. Chien, Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano letters 19, 8250 (2019).
  10. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54, 11169 (1996a).
  11. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6, 15 (1996b).
  12. P. E. Blöchl, Projector augmented-wave method, Physical Review B 50, 17953 (1994).
  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77, 3865 (1996).
  14. S. S. Tsirkin, High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code, npj Computational Materials 7, 33 (2021).
  15. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage Learning, Oxford, 2022).
  16. K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, Oxford, 2015).
  17. P. Flubacher, A. Leadbetter, and J. Morrison, The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra, Philosophical Magazine 4, 273 (1959).
  18. C. J. Glassbrenner and G. A. Slack, Thermal conductivity of silicon and germanium from 3 k to the melting point, Physical review 134, A1058 (1964).
  19. D. E. Tsatis, Thermal diffusivity of ge-7031 varnish, Journal of applied physics 62, 302 (1987).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com