Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plane Hamiltonian Cycles in Convex Drawings (2403.12898v1)

Published 19 Mar 2024 in cs.CG, cs.DM, and math.CO

Abstract: A conjecture by Rafla from 1988 asserts that every simple drawing of the complete graph $K_n$ admits a plane Hamiltonian cycle. It turned out that already the existence of much simpler non-crossing substructures in such drawings is hard to prove. Recent progress was made by Aichholzer et al. and by Suk and Zeng who proved the existence of a plane path of length $\Omega(\log n / \log \log n)$ and of a plane matching of size $\Omega(n{1/2})$ in every simple drawing of $K_{n}$. Instead of studying simpler substructures, we prove Rafla's conjecture for the subclass of convex drawings, the most general class in the convexity hierarchy introduced by Arroyo et al. Moreover, we show that every convex drawing of $K_n$ contains a plane Hamiltonian path between each pair of vertices (Hamiltonian connectivity) and a plane $k$-cycle for each $3 \leq k \leq n$ (pancyclicity), and present further results on maximal plane subdrawings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com