Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A second-order iterative time integration scheme for linear poroelasticity (2403.12699v1)

Published 19 Mar 2024 in math.NA and cs.NA

Abstract: We propose a novel time stepping method for linear poroelasticity by extending a recent iterative decoupling approach to the second-order case. This results in a two-step scheme with an inner iteration and a relaxation step. We prove second-order convergence for a prescribed number of inner iteration steps, only depending on the coupling strength of the elastic and the flow equation. The efficiency of the scheme is illustrated by a number of numerical experiments, including a simulation of three-dimensional brain tissue.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. Altmann and M. Deiml. A novel iterative time integration scheme for linear poroelasticity. Electron. Trans. Numer. Anal., to appear, 2024.
  2. Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems. Math. Comp., 90(329):1089–1118, 2021.
  3. Port-Hamiltonian formulations of poroelastic network models. Math. Comput. Model. Dyn. Sys., 27(1):429–452, 2021.
  4. Higher-order iterative decoupling for poroelasticity. ArXiv preprint 2311.14400, 2023.
  5. Semi-explicit integration of second order for weakly coupled poroelasticity. BIT Numer. Math., to appear, 2024.
  6. J. Arf and B. Simeon. A space-time isogeometric method for the partial differential-algebraic system of Biot’s poroelasticity model. Electron. Trans. Numer. Anal., 55:310–340, 2022.
  7. M. A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12(2):155–164, 1941.
  8. Space–time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Engrg., 320:745–768, 2017.
  9. Design and construction of a realistic digital brain phantom. IEEE T. Med. Imaging, 17(3):463–468, 1998.
  10. E. Detournay and A. H. D. Cheng. Fundamentals of poroelasticity. In Analysis and Design Methods, pages 113–171. Elsevier, 1993.
  11. A. Ern and S. Meunier. A posteriori error analysis of Euler–Galerkin approximations to coupled elliptic-parabolic problems. ESAIM: Math. Model. Numer. Anal., 43(2):353–375, 2009.
  12. A-posteriori error estimation and adaptivity for multiple-network poroelasticity. ESAIM: Math. Model. Numer. Anal., 57(4):1921–1952, 2023.
  13. Q. Fang. Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomed. Opt. Express, 1(1):165–175, 2010.
  14. Q. Hong and J. Kraus. Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal., 48:202–226, 2018.
  15. Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation. Math. Comput. Simulat., 177:385–403, 2020.
  16. P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society, Zürich, 2006.
  17. Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Engrg., 200(23-24):2094–2116, 2011.
  18. Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Engrg., 200(13-16):1591–1606, 2011.
  19. Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput., 39(1):A1–A24, 2017.
  20. Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Method. Appl. M., 95(3):359–382, 1992.
  21. Are brain displacements and pressures within the parenchyma induced by surface pressure differences? A computational modelling study. PLoS ONE, 18(12):e0288668, 2023.
  22. A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci., 11(2):131–144, 2007.
  23. A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci., 12(4):417–435, 2008.
  24. R. E. Showalter. Diffusion in poro-elastic media. J. Math. Anal. Appl., 251(1):310–340, 2000.
  25. M. F. Wheeler and X. Gai. Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numer. Meth. Part. D. E., 23(4):785–797, 2007.
  26. Boomeramg: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math., 41(1):155–177, 2002.
Citations (2)

Summary

We haven't generated a summary for this paper yet.