Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning and Forecasting (2403.12589v2)

Published 19 Mar 2024 in cs.RO and cs.AI

Abstract: Designing a humanoid locomotion controller is challenging and classically split up in sub-problems. Footstep planning is one of those, where the sequence of footsteps is defined. Even in simpler environments, finding a minimal sequence, or even a feasible sequence, yields a complex optimization problem. In the literature, this problem is usually addressed by search-based algorithms (e.g. variants of A*). However, such approaches are either computationally expensive or rely on hand-crafted tuning of several parameters. In this work, at first, we propose an efficient footstep planning method to navigate in local environments with obstacles, based on state-of-the art Deep Reinforcement Learning (DRL) techniques, with very low computational requirements for on-line inference. Our approach is heuristic-free and relies on a continuous set of actions to generate feasible footsteps. In contrast, other methods necessitate the selection of a relevant discrete set of actions. Second, we propose a forecasting method, allowing to quickly estimate the number of footsteps required to reach different candidates of local targets. This approach relies on inherent computations made by the actor-critic DRL architecture. We demonstrate the validity of our approach with simulation results, and by a deployment on a kid-size humanoid robot during the RoboCup 2023 competition.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. G. Ficht and S. Behnke, “Bipedal humanoid hardware design: A technology review,” Current Robotics Reports, vol. 2, pp. 201–210, 2021.
  2. J. Lee, J. Hwangbo, L. Wellhausen, et al., “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, p. eabc5986, 2020.
  3. T. Haarnoja, B. Moran, et al., “Learning agile soccer skills for a bipedal robot with deep reinforcement learning,” arXiv preprint arXiv:2304.13653, 2023.
  4. S. Kajita, F. Kanehiro, et al., “Biped walking pattern generation by using preview control of zero-moment point,” in 2003 IEEE ICRA (Cat. No. 03CH37422), vol. 2, pp. 1620–1626, 2003.
  5. A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion–force control of constrained fully-actuated robots:“task space inverse dynamics”,” Robotics and Autonomous Systems, vol. 63, pp. 150–157, 2015.
  6. M. Missura and M. Bennewitz, “Fast footstep planning with aborting a,” in 2021 IEEE ICRA, pp. 2964–2970, 2021.
  7. E. Yoshida, I. Belousov, et al., “Humanoid motion planning for dynamic tasks,” in IEEE-RAS International Conference on Humanoid Robots, pp. 1–6, 2005.
  8. N. Perrin, O. Stasse, et al., “Real-time footstep planning for humanoid robots among 3d obstacles using a hybrid bounding box,” in IEEE ICRA, pp. 977–982, 2012.
  9. O. Kanoun, J.-P. Laumond, and E. Yoshida, “Planning foot placements for a humanoid robot: A problem of inverse kinematics,” The International Journal of Robotics Research, vol. 30, no. 4, pp. 476–485, 2011.
  10. J. J. Kuffner, K. Nishiwaki, et al., “Footstep planning among obstacles for biped robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 500–505, 2001.
  11. J. Chestnutt, M. Lau, et al., “Footstep planning for the honda asimo humanoid,” in IEEE ICRA, pp. 629–634, 2005.
  12. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  13. J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation with dynamic footstep plans,” in 2011 IEEE ICRA, pp. 3982–3987, 2011.
  14. S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national conference on Artificial intelligence, pp. 476–483, 2002.
  15. A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Anytime search-based footstep planning with suboptimality bounds,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 674–679, 2012.
  16. M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with provable bounds on sub-optimality,” Advances in neural information processing systems, vol. 16, 2003.
  17. L. Hofer and Q. Rouxel, “An operational method toward efficient walk control policies for humanoid robots,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 27, pp. 489–497, 2017.
  18. A. Meduri, M. Khadiv, and L. Righetti, “Deepq stepper: A framework for reactive dynamic walking on uneven terrain,” in 2021 IEEE ICRA, pp. 2099–2105, 2021.
  19. V. Mnih, K. Kavukcuoglu, et al., “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.
  20. V. Tsounis, M. Alge, et al., “Deepgait: Planning and control of quadrupedal gaits using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3699–3706, 2020.
  21. J. Allali, A. Boussicault, et al., “Rhoban football club: Robocup humanoid kid-size 2023 champion team paper,” 2024.
  22. J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation with dynamic footstep plans,” in IEEE ICRA, pp. 3982–3987, 2011.
  23. N. Perrin, “Biped footstep planning,” in Humanoid Robotics: A Reference, pp. 1–21, Springer Netherlands, 2017.
  24. S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in International conference on machine learning, pp. 1587–1596, PMLR, 2018.
  25. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” CoRR, vol. abs/1801.01290, 2018.
  26. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
  27. A. Raffin, A. Hill, et al., “Stable baselines3,” 2019.
  28. M. Andrychowicz, F. Wolski, et al., “Hindsight experience replay,” Advances in neural information processing systems, vol. 30, 2017.
  29. “openvinotoolkit/openvino,” May 2023. https://github.com/openvinotoolkit/openvino.
  30. D. Dimitrov, P.-B. Wieber, et al., “On the implementation of model predictive control for on-line walking pattern generation,” in 2008 IEEE ICRA, pp. 2685–2690, 2008.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com