2000 character limit reached
Topological Boundary Modes in Nonlinear Dynamics with Chiral Symmetry (2403.12480v2)
Published 19 Mar 2024 in cond-mat.stat-mech, cond-mat.mes-hall, and cond-mat.quant-gas
Abstract: Particle-hole symmetry and chiral symmetry play a pivotal role in multiple areas of physics, yet they remain unstudied in systems with nonlinear interactions whose nonlinear normal modes do not exhibit $\textbf{U}(1)$-gauge symmetry. In this work, we establish particle-hole symmetry and chiral symmetry in such systems. Chiral symmetry ensures the quantization of the Berry phase of nonlinear normal modes and categorizes the topological phases of nonlinear dynamics. We show topologically protected static boundary modes in chiral-symmetric nonlinear systems. Our theoretical framework extends particle-hole and chiral symmetries to nonlinear dynamics, whose nonlinear modes do not necessarily yield $\textbf{U}(1)$-gauge symmetry.
- J. Eades and F. J. Hartmann, “Forty years of antiprotons,” Rev. Mod. Phys. 71, 373–419 (1999).
- Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
- Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959–2007 (2010a).
- TC Lubensky, CL Kane, Xiaoming Mao, Anton Souslov, and Kai Sun, “Phonons and elasticity in critically coordinated lattices,” Reports on Progress in Physics 78, 073901 (2015).
- CL Kane and TC Lubensky, “Topological boundary modes in isostatic lattices,” Nature Physics 10, 39 (2014).
- Di Zhou, Leyou Zhang, and Xiaoming Mao, “Topological edge floppy modes in disordered fiber networks,” Phys. Rev. Lett. 120, 068003 (2018).
- Anne S. Meeussen, Jayson Paulose, and Vincenzo Vitelli, “Geared topological metamaterials with tunable mechanical stability,” Physical Review X 6, 041029–1–041029–14 (2016).
- Kai Sun and Xiaoming Mao, “Continuum theory for topological edge soft modes,” Phys. Rev. Lett. 124, 207601 (2020).
- Jayson Paulose, Bryan Gin-ge Chen, and Vincenzo Vitelli, “Topological modes bound to dislocations in mechanical metamaterials,” Nature Physics 11, 153–156 (2015).
- Di Zhou, Leyou Zhang, and Xiaoming Mao, “Topological boundary floppy modes in quasicrystals,” Phys. Rev. X 9, 021054 (2019).
- Ze‐Guo Chen Hao Ge Cheng He Xin Li Ming‐Hui Lu Xiao‐Chen Sun Si‐Yuan Yu Chen, Yan‐Feng and Xiujuan Zhang, “Various topological phases and their abnormal effects of topological acoustic metamaterials,” Interdisciplinary Materials 2, 179–230 (2023).
- Ching-Kai Chiu, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu, “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys. 88, 035005 (2016).
- Andreas P Schnyder, Shinsei Ryu, Akira Furusaki, and Andreas WW Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions,” Physical Review B 78, 195125 (2008).
- M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
- W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698–1701 (1979).
- Yasuhiro Hatsugai, “Chern number and edge states in the integer quantum hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993a).
- Kazuki Sone and Yuto Ashida, “Anomalous topological active matter,” Phys. Rev. Lett. 123, 205502 (2019).
- Taylor L. Hughes, Emil Prodan, and B. Andrei Bernevig, “Inversion-symmetric topological insulators,” Phys. Rev. B 83, 245132 (2011).
- Yasuhiro Hatsugai, “Edge states in the integer quantum hall effect and the riemann surface of the bloch function,” Phys. Rev. B 48, 11851–11862 (1993b).
- Zhaoju Yang, Eran Lustig, Gal Harari, Yonatan Plotnik, Yaakov Lumer, Miguel A Bandres, and Mordechai Segev, “Mode-locked topological insulator laser utilizing synthetic dimensions,” Physical Review X 10, 011059 (2020).
- Marcela Peláez, Urko Reinosa, Julien Serreau, Matthieu Tissier, and Nicolás Wschebor, “Spontaneous chiral symmetry breaking in the massive landau gauge: Realistic running coupling,” Phys. Rev. D 103, 094035 (2021).
- Chao-Hsiang Sheu and Mikhail Shifman, “Consistency of chiral symmetry breaking in chiral yang-mills theory with adiabatic continuity,” Phys. Rev. D 107, 054030 (2023).
- Mikael C Rechtsman, Julia M Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and Alexander Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013).
- Sankar Das Sarma, Michael Freedman, and Chetan Nayak, “Majorana zero modes and topological quantum computation,” npj Quantum Information 1, 1–13 (2015).
- Kazuki Sone, Yuto Ashida, and Takahiro Sagawa, “Topological synchronization of coupled nonlinear oscillators,” arXiv preprint arXiv:2012.09479 (2020).
- Oded Zilberberg, Sheng Huang, Jonathan Guglielmon, Mohan Wang, Kevin P Chen, Yaacov E Kraus, and Mikael C Rechtsman, “Photonic topological boundary pumping as a probe of 4d quantum hall physics,” Nature 553, 59–62 (2018).
- Jiho Noh, Wladimir A Benalcazar, Sheng Huang, Matthew J Collins, Kevin P Chen, Taylor L Hughes, and Mikael C Rechtsman, “Topological protection of photonic mid-gap defect modes,” Nature Photonics 12, 408–415 (2018).
- Sebabrata Mukherjee and Mikael C Rechtsman, “Observation of unidirectional solitonlike edge states in nonlinear floquet topological insulators,” Physical Review X 11, 041057 (2021).
- Yonatan Plotnik, Mikael C Rechtsman, Daohong Song, Matthias Heinrich, Julia M Zeuner, Stefan Nolte, Yaakov Lumer, Natalia Malkova, Jingjun Xu, Alexander Szameit, et al., “Observation of unconventional edge states in ‘photonic graphene’,” Nature materials 13, 57–62 (2014).
- Jiho Noh, Sheng Huang, Daniel Leykam, Yi Dong Chong, Kevin P Chen, and Mikael C Rechtsman, “Experimental observation of optical weyl points and fermi arc-like surface states,” Nature Physics 13, 611–617 (2017).
- Rivka Bekenstein, Ran Schley, Maor Mutzafi, Carmel Rotschild, and Mordechai Segev, “Optical simulations of gravitational effects in the newton–schrödinger system,” Nature Physics 11, 872–878 (2015).
- Yonatan Sharabi, Hanan Herzig Sheinfux, Yoav Sagi, Gadi Eisenstein, and Mordechai Segev, “Self-induced diffusion in disordered nonlinear photonic media,” Physical Review Letters 121, 233901 (2018).
- Yuval Lamhot, Assaf Barak, Or Peleg, and Mordechai Segev, “Self-trapping of optical beams through thermophoresis,” Physical review letters 105, 163906 (2010).
- Motohiko Ezawa, “Nonlinear non-hermitian higher-order topological laser,” Phys. Rev. Res. 4, 013195 (2022).
- Motohiko Ezawa, “Nonlinear dynamical topological phases in a cooper-pair box array,” Phys. Rev. B 108, 075412 (2023).
- Joshua R. Tempelman, Kathryn H. Matlack, and Alexander F. Vakakis, “Topological protection in a strongly nonlinear interface lattice,” Phys. Rev. B 104, 174306 (2021).
- Mark J Ablowitz and Justin T Cole, “Nonlinear optical waveguide lattices: Asymptotic analysis, solitons, and topological insulators,” Physica D: Nonlinear Phenomena 440, 133440 (2022).
- Farzad Zangeneh-Nejad and Romain Fleury, “Nonlinear second-order topological insulators,” Phys. Rev. Lett. 123, 053902 (2019).
- F Kh Abdullaev and BA Umarov, ‘‘Exact solitonic solutions for optical media with χ𝜒\chiitalic_χ (2) nonlinearity and pt-symmetric potentials,” in Journal of Physics: Conference Series, Vol. 553 (IOP Publishing, 2014) p. 012001.
- Yaakov Lumer, Yonatan Plotnik, Mikael C Rechtsman, and Mordechai Segev, “Nonlinearly induced p t transition in photonic systems,” Physical review letters 111, 263901 (2013b).
- Mark J Ablowitz and Ziad H Musslimani, “Integrable nonlocal nonlinear schrödinger equation,” Physical review letters 110, 064105 (2013).
- Nan Lu, Panayotis G Kevrekidis, and Jesús Cuevas-Maraver, “-symmetric sine-gordon breathers,” Journal of Physics A: Mathematical and Theoretical 47, 455101 (2014).
- Mark J Ablowitz, Joel B Been, and Lincoln D Carr, “Fractional integrable nonlinear soliton equations,” Physical Review Letters 128, 184101 (2022).
- Li Fan, Jian Wang, Leo T Varghese, Hao Shen, Ben Niu, Yi Xuan, Andrew M Weiner, and Minghao Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
- Joseph Schindler, Ang Li, Mei C Zheng, Fred M Ellis, and Tsampikos Kottos, “Experimental study of active lrc circuits with pt symmetries,” Physical Review A 84, 040101 (2011).
- Henri Benisty, Aloyse Degiron, Anatole Lupu, André De Lustrac, Sébastien Chénais, Sébastien Forget, Mondher Besbes, Grégory Barbillon, Aurélien Bruyant, Sylvain Blaize, et al., “Implementation of pt symmetric devices using plasmonics: principle and applications,” Optics Express 19, 18004–18019 (2011).
- Tomoki Ozawa, Hannah M Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, et al., “Topological photonics,” Reviews of Modern Physics 91, 015006 (2019a).
- Lucien Jezequel and Pierre Delplace, “Nonlinear edge modes from topological one-dimensional lattices,” Physical Review B 105, 035410 (2022).
- Raditya Weda Bomantara, Wenlei Zhao, Longwen Zhou, and Jiangbin Gong, “Nonlinear dirac cones,” Physical Review B(R) 96, 121406 (2017a).
- Kazuki Sone, Motohiko Ezawa, Yuto Ashida, Nobuyuki Yoshioka, and Takahiro Sagawa, “Nonlinearity-induced topological phase transition characterized by the nonlinear chern number,” arXiv preprint arXiv:2307.16827 (2023).
- Kazuki Sone, Yuto Ashida, and Takahiro Sagawa, “Topological synchronization of coupled nonlinear oscillators,” Phys. Rev. Res. 4, 023211 (2022).
- Johannes Knebel, Philipp M. Geiger, and Erwin Frey, “Topological phase transition in coupled rock-paper-scissors cycles,” Phys. Rev. Lett. 125, 258301 (2020).
- Muhammad Umer and Jiangbin Gong, “Topologically protected dynamics in three-dimensional nonlinear antisymmetric lotka-volterra systems,” Phys. Rev. B 106, L241403 (2022).
- Tomonari Mizoguchi Yoshida, Tsuneya and Yasuhiro Hatsugai, “Chiral edge modes in evolutionary game theory: A kagome network of rock-paper-scissors cycles,” Physical Review E 104, 025003 (2021).
- Tsuneya Yoshida, Tomonari Mizoguchi, and Yasuhiro Hatsugai, “Non-hermitian topology in rock–paper–scissors games,” Scientific Reports 12, 560 (2022).
- Po-Wei Lo, Christian D. Santangelo, Bryan Gin-ge Chen, Chao-Ming Jian, Krishanu Roychowdhury, and Michael J. Lawler, “Topology in nonlinear mechanical systems,” Phys. Rev. Lett. 127, 076802 (2021).
- Ke Liu and Glaucio H. Paulino, “Nonlinear mechanics of non-rigid origami: an efficient computational approach,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, 20170348 (2017).
- Matheus I. N. Rosa, Raj Kumar Pal, José R. F. Arruda, and Massimo Ruzzene, “Edge states and topological pumping in spatially modulated elastic lattices,” Phys. Rev. Lett. 123, 034301 (2019).
- Fangyuan Ma, Zheng Tang, Xiaotian Shi, Ying Wu, Jinkyu Yang, Di Zhou, Yugui Yao, and Feng Li, “Nonlinear topological mechanics in elliptically geared isostatic metamaterials,” Phys. Rev. Lett. 131, 046101 (2023).
- Hendrik Hohmann, Tobias Hofmann, Tobias Helbig, Stefan Imhof, Hauke Brand, Lavi K. Upreti, Alexander Stegmaier, Alexander Fritzsche, Tobias Müller, Udo Schwingenschlögl, Ching Hua Lee, Martin Greiter, Laurens W. Molenkamp, Tobias Kießling, and Ronny Thomale, “Observation of cnoidal wave localization in nonlinear topolectric circuits,” Phys. Rev. Res. 5, L012041 (2023).
- You Wang, Li-Jun Lang, Ching Hua Lee, Baile Zhang, and YD Chong, “Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial,” Nature communications 10, 1–7 (2019).
- Rachel S Edgar, Edward W Green, Yuwei Zhao, Gerben Van Ooijen, Maria Olmedo, Ximing Qin, Yao Xu, Min Pan, Utham K Valekunja, Kevin A Feeney, et al., “Peroxiredoxins are conserved markers of circadian rhythms,” Nature 485, 459–464 (2012).
- Sergey Alyatkin, Helgi Sigurdsson, Alexis Askitopoulos, Julian D Töpfer, and Pavlos G Lagoudakis, “Quantum fluids of light in all-optical scatterer lattices,” Nature Communications 12, 5571 (2021).
- Ross Parker, Alejandro Aceves, Jesús Cuevas-Maraver, and P. G. Kevrekidis, “Standing and traveling waves in a model of periodically modulated one-dimensional waveguide arrays,” Phys. Rev. E 108, 024214 (2023a).
- Ross Parker, Alejandro Aceves, Jesús Cuevas-Maraver, and P. G. Kevrekidis, “Standing and traveling waves in a model of periodically modulated one-dimensional waveguide arrays,” Phys. Rev. E 108, 024214 (2023b).
- Yiming Pan, Moshe-Ishay Cohen, and Mordechai Segev, “Superluminal k-gap solitons in nonlinear photonic time crystals,” Physical Review Letters 130, 233801 (2023).
- Michel Fruchart, Ryo Hanai, Peter B Littlewood, and Vincenzo Vitelli, “Non-reciprocal phase transitions,” Nature 592, 363–369 (2021).
- J. P. Eckmann and D. Ruelle, “Ergodic theory of chaos and strange attractors,” Rev. Mod. Phys. 57, 617–656 (1985).
- Di Zhou, D. Zeb Rocklin, Michael Leamy, and Yugui Yao, “Topological Invariant and Anomalous Edge Modes of Strongly Nonlinear Systems,” Nature Communications 13, 3379 (2022).
- Jijie Tang, Fangyuan Ma, Feng Li, Honglian Guo, and Di Zhou, “Strongly nonlinear topological phases of cascaded topoelectrical circuits,” Frontiers of Physics 18, 33311 (2023).
- J. Liu and L. B. Fu, “Berry phase in nonlinear systems,” Phys. Rev. A 81, 052112 (2010).
- Robert Savit, “Duality in field theory and statistical systems,” Rev. Mod. Phys. 52, 453–487 (1980).
- Baruch Rosenstein and Dingping Li, “Ginzburg-landau theory of type ii superconductors in magnetic field,” Rev. Mod. Phys. 82, 109–168 (2010).
- Michael E. Fisher, “Renormalization group theory: Its basis and formulation in statistical physics,” Rev. Mod. Phys. 70, 653–681 (1998).
- NARENDRA S. GOEL, SAMARESH C. MAITRA, and ELLIOTT W. MONTROLL, “On the volterra and other nonlinear models of interacting populations,” Rev. Mod. Phys. 43, 231–276 (1971).
- Guy Bunin, “Ecological communities with lotka-volterra dynamics,” Phys. Rev. E 95, 042414 (2017).
- Léon Brenig, “Complete factorisation and analytic solutions of generalized lotka-volterra equations,” Physics Letters A 133, 378–382 (1988).
- Matthew D Fronk and Michael J Leamy, “Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems,” Journal of Vibration and Acoustics 139 (2017).
- Rajesh Chaunsali, Haitao Xu, Jinkyu Yang, Panayotis G. Kevrekidis, and Georgios Theocharis, “Stability of topological edge states under strong nonlinear effects,” Phys. Rev. B 103, 024106 (2021).
- Rajesh Chaunsali and Georgios Theocharis, “Self-induced topological transition in phononic crystals by nonlinearity management,” Phys. Rev. B 100, 014302 (2019).
- Rajesh Chaunsali, Panayotis G. Kevrekidis, Dimitri Frantzeskakis, and Georgios Theocharis, “Dirac solitons and topological edge states in the β𝛽\betaitalic_β-fermi-pasta-ulam-tsingou dimer lattice,” Phys. Rev. E 108, 054224 (2023).
- Shaofeng Li, Suhui Qian, Hui Chen, Jinbao Song, and Anzhou Cao, “An extended nonlinear schrödinger equation for water waves with linear shear flow, wind, and dissipation,” AIP Advances 11 (2021).
- Daria Smirnova, Sergey Kruk, Daniel Leykam, Elizaveta Melik-Gaykazyan, Duk-Yong Choi, and Yuri Kivshar, “Third-harmonic generation in photonic topological metasurfaces,” Physical review letters 123, 103901 (2019).
- Pankaj Bhalla, Kamal Das, Dimitrie Culcer, and Amit Agarwal, “Resonant second-harmonic generation as a probe of quantum geometry,” Phys. Rev. Lett. 129, 227401 (2022).
- Daria Smirnova, Daniel Leykam, Yidong Chong, and Yuri Kivshar, “Nonlinear topological photonics,” Applied Physics Reviews 7, 021306 (2020).
- J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett. 119, 023603 (2017).
- Nader Mostaan, Fabian Grusdt, and Nathan Goldman, “Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures,” nature communications 13, 5997 (2022).
- Chao Hang, Dmitry A Zezyulin, Guoxiang Huang, and Vladimir V Konotop, “Nonlinear topological edge states in a non-hermitian array of optical waveguides embedded in an atomic gas,” Physical Review A 103, L040202 (2021).
- Qiong Ma, Adolfo G Grushin, and Kenneth S Burch, “Topology and geometry under the nonlinear electromagnetic spotlight,” Nature materials 20, 1601–1614 (2021).
- Stephan Wong, Terry A. Loring, and Alexander Cerjan, “Probing topology in nonlinear topological materials using numerical k𝑘kitalic_k-theory,” Phys. Rev. B 108, 195142 (2023).
- Jeffrey B Parker, JW Burby, JB Marston, and Steven M Tobias, “Nontrivial topology in the continuous spectrum of a magnetized plasma,” Physical Review Research 2, 033425 (2020).
- Sergey Pirogov, Alexander Rybko, Anastasia Kalinina, and Mikhail Gelfand, “Recombination processes and nonlinear markov chains,” Journal of Computational Biology 23, 711–717 (2016).
- Masatoshi Sato and Yoichi Ando, “Topological superconductors: a review,” Reports on Progress in Physics 80, 076501 (2017).
- Shinsei Ryu and Yasuhiro Hatsugai, “Topological origin of zero-energy edge states in particle-hole symmetric systems,” Phys. Rev. Lett. 89, 077002 (2002).
- Ryosuke Iritani Adachi, Kyosuke and Ryusuke Hamazaki, “Universal constraint on nonlinear population dynamics,” Communications Physics 5, 129 (2022).
- Dixon D. Jones Ludwig, Donald and Crawford S. Holling, “Qualitative analysis of insect outbreak systems: the spruce budworm and forest,” Journal of animal ecology 47, 315–332 (1978).
- Christopher Chong, Yifan Wang, Donovan Maréchal, Efstathios G Charalampidis, Miguel Molerón, Alejandro J Martínez, Mason A Porter, Panayotis G Kevrekidis, and Chiara Daraio, “Nonlinear localized modes in two-dimensional hexagonally-packed magnetic lattices,” New Journal of Physics 23, 043008 (2021).
- Yu-Ao Chen, Sebastian D Huber, Stefan Trotzky, Immanuel Bloch, and Ehud Altman, “Many-body landau–zener dynamics in coupled one-dimensional bose liquids,” Nature Physics 7, 61–67 (2011).
- Thomas Tuloup, Raditya Weda Bomantara, Ching Hua Lee, and Jiangbin Gong, “Nonlinearity induced topological physics in momentum space and real space,” Phys. Rev. B 102, 115411 (2020a).
- Raditya Weda Bomantara, Wenlei Zhao, Longwen Zhou, and Jiangbin Gong, “Nonlinear dirac cones,” Phys. Rev. B 96, 121406 (2017b).
- Di Xiao, Ming-Che Chang, and Qian Niu, “Berry phase effects on electronic properties,” Rev. Mod. Phys. 82, 1959–2007 (2010b).
- Jie Liu, Biao Wu, and Qian Niu, “Nonlinear evolution of quantum states in the adiabatic regime,” Phys. Rev. Lett. 90, 170404 (2003).
- Han Pu, Peter Maenner, Weiping Zhang, and Hong Y. Ling, “Adiabatic condition for nonlinear systems,” Phys. Rev. Lett. 98, 050406 (2007).
- FN Litvinets, AV Shapovalov, and A Yu Trifonov, “Berry phases for the nonlocal gross–pitaevskii equation with a quadratic potential,” Journal of Physics A: Mathematical and General 39, 1191 (2006).
- Asela Abeya, Gino Biondini, and Mark A Hoefer, “Whitham modulation theory for the defocusing nonlinear schrödinger equation in two and three spatial dimensions,” Journal of Physics A: Mathematical and Theoretical 56, 025701 (2023).
- AA Minzoni and Noel F Smyth, “Modulation theory, dispersive shock waves and gerald beresford whitham,” Physica D: Nonlinear Phenomena 333, 6–10 (2016).
- Gino Biondini, Christopher Chong, and Panayotis Kevrekidis, “On the whitham modulation equations for the toda lattice and the quantitative characterization of its dispersive shocks,” arXiv preprint arXiv:2312.10755 (2023).
- Thomas Tuloup, Raditya Weda Bomantara, Ching Hua Lee, and Jiangbin Gong, “Nonlinearity induced topological physics in momentum space and real space,” Physical Review B 102, 115411 (2020b).
- Lukas J Maczewsky, Matthias Heinrich, Mark Kremer, Sergey K Ivanov, Max Ehrhardt, Franklin Martinez, Yaroslav V Kartashov, Vladimir V Konotop, Lluis Torner, Dieter Bauer, et al., “Nonlinearity-induced photonic topological insulator,” Science 370, 701–704 (2020).
- Yaakov Lumer, Yonatan Plotnik, Mikael C Rechtsman, and Mordechai Segev, “Self-localized states in photonic topological insulators,” Physical review letters 111, 243905 (2013c).
- Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, and Iacopo Carusotto, “Topological photonics,” Rev. Mod. Phys. 91, 015006 (2019b).
- Xin Zhou, You Wang, Daniel Leykam, and Yi Dong Chong, “Optical isolation with nonlinear topological photonics,” New Journal of Physics 19, 095002 (2017).
- Vladimir V. Konotop, Jianke Yang, and Dmitry A. Zezyulin, “Nonlinear waves in 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric systems,” Rev. Mod. Phys. 88, 035002 (2016).
- Arbel Haim and Yuval Oreg, “Time-reversal-invariant topological superconductivity in one and two dimensions,” Physics Reports 825, 48 (2019).
- Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, and Andreas WW Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New Journal of Physics 12, 065010 (2010).
- Eugene Dumitrescu, Jay D. Sau, and Sumanta Tewari, “Magnetic field response and chiral symmetry of time-reversal-invariant topological superconductors,” Phys. Rev. B 90, 245438 (2014).
- Di Zhou and Junyi Zhang, “Non-hermitian topological metamaterials with odd elasticity,” Phys. Rev. Research 2, 023173 (2020).
- Doru Sticlet, “Edge states in chern insulators and majorana fermions in topological superconductors,” Diss. Université Paris Sud-Paris XI (2012).
- Chunyan Li and Yaroslav V. Kartashov, “Topological gap solitons in rabi su-schrieffer-heeger lattices,” Phys. Rev. B 108, 184301 (2023).
- Andrew Waldron, “A wick rotation for spinor fields: the canonical approach,” Physics Letters B 433 (1998).
- Xinxin Guo, Lucien Jezequel, Mathieu Padlewski, Hervé Lissek, Pierre Delplace, and Romain Fleury, “Practical realization of chiral nonlinearity for strong topological protection,” arXiv preprint arXiv:2403.10590 (2024).