New Regularity Criteria for Navier-Stokes and SQG Equations in Critical Spaces (2403.12383v2)
Abstract: In this paper, we investigate some priori estimates to provide the critical regularity criteria for incompressible Navier-Stokes equations on $\mathbb{R}3$ and super critical surface quasi-geostrophic equations on $\mathbb{R}2$. Concerning the Navier-Stokes equation, we demonstrate that a Leray-Hopf solution $u$ is regular if $u\in L_T{\frac{2}{1-\alpha}} \dot{B}{-\alpha}_{\infty,\infty}(\mathbb{R}3)$, or $u$ in Lorentz space $ L_T{p,r} \dot{B}{-1+\frac{2}{p}}_{\infty,\infty}(\mathbb{R}3)$, with $4\leq p\leq r<\infty$. Additionally, an alternative regularity condition is expressed as $u\in L_{T}{\frac{2}{1-\alpha}} \dot{B}{-\alpha}{\infty,\infty}(\mathbb{R}3)+{L_T\infty\dot{B}{-1}{\infty,\infty}}(\mathbb{R}3)$($\alpha\in(0,1)$), contingent upon a smallness assumption on the norm $L_T\infty\dot{B}{-1}_{\infty,\infty}$. For the SQG equation, we derive that a Leray-Hopf weak solution $\theta\in L_T{\frac{\alpha}{\varepsilon}} \dot{C}{1-\alpha+\epsilon}(\mathbb{R}2)$ is smooth for any $\varepsilon$ small enough. Similar to the case of Navier-Stokes equation, we derive regularity criterion in more refined spaces, i.e. Lorentz spaces $L_T{\frac{\alpha}{\epsilon},r}\dot{C}{1-\alpha+\epsilon}(\mathbb{R}2)$ and addition of two critical spaces $L_{T}{\frac{\alpha}{\epsilon}}\dot{C}{1-\alpha+\epsilon}(\mathbb{R}2)+{L_T\infty\dot{C}{1-\alpha}(\mathbb{R}2)}$, with smallness assumption on $L_T\infty\dot{C}{1-\alpha}(\mathbb{R}2)$.