The Lyapunov exponent as a signature of dissipative many-body quantum chaos (2403.12359v2)
Abstract: A distinct feature of Hermitian quantum chaotic dynamics is the exponential increase of certain out-of-time-order-correlation (OTOC) functions around the Ehrenfest time with a rate given by a Lyapunov exponent. Physically, the OTOCs describe the growth of quantum uncertainty that crucially depends on the nature of the quantum motion. Here, we employ the OTOC in order to provide a precise definition of dissipative quantum chaos. For this purpose, we compute analytically the Lyapunov exponent for the vectorized formulation of the large $q$-limit of a $q$-body Sachdev-Ye-Kitaev model coupled to a Markovian bath. These analytic results are confirmed by an explicit numerical calculation of the Lyapunov exponent for several values of $q \geq 4$ based on the solutions of the Schwinger-Dyson and Bethe-Salpeter equations. We show that the Lyapunov exponent decreases monotonically as the coupling to the bath increases and eventually becomes negative at a critical value of the coupling signaling a transition to a dynamics which is no longer quantum chaotic. Therefore, a positive Lyapunov exponent is a defining feature of dissipative many-body quantum chaos. The observation of the breaking of the exponential growth for sufficiently strong coupling suggests that dissipative quantum chaos may require in certain cases a sufficiently weak coupling to the environment.
- Y. Sekino and L. Susskind, Fast scramblers, Journal of High Energy Physics 10, 065 (2008).
- D. Bagrets, A. Altland, and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nuclear Physics B 921, 727 (2017).
- A. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov Phys JETP 28, 1200 (1969).
- G. Berman and G. Zaslavsky, Condition of stochasticity in quantum nonlinear systems, Physica A: Statistical Mechanics and its Applications 91, 450 (1978).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).
- E. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Math. Proc. Cam. Phil. Soc. 49, 790 (1951).
- F. J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3, 140 (1962a).
- F. Dyson, Statistical Theory of the Energy Levels of Complex Systems. II, J. Math. Phys. 3, 157 (1962b).
- F. Dyson, Statistical Theory of the Energy Levels of Complex Systems. III, J. Math. Phys. 3, 166 (1962c).
- F. Dyson, The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics, J. Math. Phys. 3, 1199 (1962d).
- F. Dyson, A Class of Matrix Ensembles, J. Math. Phys. 13, 90 (1972).
- M. L. Mehta, Random matrices (Academic press, 2004).
- J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, Journal of High Energy Physics 08, 106 (2016), arXiv:1503.01409 [hep-th] .
- J. French and S. Wong, Validity of random matrix theories for many-particle systems, Physics Letters B 33, 449 (1970).
- O. Bohigas and J. Flores, Two-body random hamiltonian and level density, Physics Letters B 34, 261 (1971a).
- J. French and S. Wong, Some random-matrix level and spacing distributions for fixed-particle-rank interactions, Physics Letters B 35, 5 (1971).
- O. Bohigas and J. Flores, Spacing and individual eigenvalue distributions of two-body random hamiltonians, Physics Letters B 35, 383 (1971b).
- L. Benet, T. Rupp, and H. A. Weidenmüller, Nonuniversal behavior of the k𝑘\mathit{k}italic_k-body embedded gaussian unitary ensemble of random matrices, Phys. Rev. Lett. 87, 010601 (2001), arXiv:cond-mat/0010425 [cond-mat] .
- S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993), arXiv:cond-mat/9212030 [cond-mat] .
- S. Sachdev, Holographic Metals and the Fractionalized Fermi Liquid, Phys. Rev. Lett. 105, 151602 (2010).
- J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, C. Liu, and J. J. M. Verbaarschot, Sparsity independent Lyapunov exponent in the Sachdev-Ye-Kitaev model (2023), arXiv:2311.00639 [hep-th] .
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a and J. J. M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 126010 (2016), arXiv:1610.03816 [hep-th] .
- C. M. Bender and S. Boettcher, Real spectra in non-hermitian hamiltonians having PT𝑃𝑇PTitalic_P italic_T symmetry, Phys. Rev. Lett. 80, 5243 (1998).
- J. Wiersig, Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112, 203901 (2014).
- K. Kawabata, Y. Ashida, and M. Ueda, Information retrieval and criticality in parity-time-symmetric systems, Phys. Rev. Lett. 119, 190401 (2017).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a and V. Godet, Euclidean wormhole in the Sachdev-Ye-Kitaev model, Phys. Rev. D 103, 046014 (2021), arXiv:2010.11633 [hep-th] .
- Y. Ashida, Z. Gong, and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
- R. Grobe, F. Haake, and H.-J. Sommers, Quantum Distinction of Regular and Chaotic Dissipative Motion, Phys. Rev. Lett. 61, 1899 (1988).
- Y. V. Fyodorov, B. A. Khoruzhenko, and H.-J. Sommers, Almost Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre Eigenvalue Statistics, Physical Review Letters 79, 557 (1997), cond-mat/9703152 .
- L. Sá, P. Ribeiro, and T. Prosen, Spectral and steady-state properties of random Liouvillians, J. Phys. A: Math. Theor. 53, 305303 (2020).
- A. Rubio-Garc\́mathrm{i}a, R. Molina, and J. Dukelsky, From integrability to chaos in quantum liouvillians, SciPost Physics Core 5, 10.21468/scipostphyscore.5.2.026 (2022).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, L. Sá, and J. J. M. Verbaarschot, Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model, Phys. Rev. X 12, 021040 (2022a).
- J. Li, T. Prosen, and A. Chan, Spectral statistics of non-hermitian matrices and dissipative quantum chaos, Phys. Rev. Lett. 127, 170602 (2021).
- A. Altland, M. Fleischhauer, and S. Diehl, Symmetry classes of open fermionic quantum matter, Physical Review X 11, 021037 (2021).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, S. M. Nishigaki, and J. J. M. Verbaarschot, Critical statistics for non-hermitian matrices, Phys. Rev. E 66, 016132 (2002).
- A. M. Garc\́mathrm{i}a-Garc\́mathrm{i}a, L. Sá, and J. J. M. Verbaarschot, Universality and its limits in non-hermitian many-body quantum chaos using the Sachdev-Ye-Kitaev model, Phys. Rev. D 107, 066007 (2023a).
- L. Sá, P. Ribeiro, and T. Prosen, Lindbladian dissipation of strongly-correlated quantum matter, Phys. Rev. Research 4, L022068 (2022).
- A. Kulkarni, T. Numasawa, and S. Ryu, Lindbladian dynamics of the Sachdev-Ye-Kitaev model, Phys. Rev. B 106, 075138 (2022).
- G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N𝑁Nitalic_N-level systems, J. Math. Phys. 17, 821 (1976).
- D. Manzano, A short introduction to the Lindblad master equation, AIP Advances 10, 025106 (2020).
- P. D. Bergamasco, G. G. Carlo, and A. M. Rivas, Quantum lyapunov exponent in dissipative systems, Physical Review E 108, 024208 (2023).
- B. Yoshida and N. Y. Yao, Disentangling scrambling and decoherence via quantum teleportation, Physical Review X 9, 011006 (2019).
- J. Tuziemski, Out-of-time-ordered correlation functions in open systems: A Feynman-Vernon influence functional approach, Physical Review A 100, 062106 (2019).
- P. Zanardi and N. Anand, Information scrambling and chaos in open quantum systems, Physical Review A 103, 062214 (2021).
- S. Syzranov, A. Gorshkov, and V. Galitski, Out-of-time-order correlators in finite open systems, Physical Review B 97, 161114 (2018).
- L.-J. Zhai and S. Yin, Out-of-time-ordered correlator in non-hermitian quantum systems, Phys. Rev. B 102, 054303 (2020).
- G. J. Turiaci, An inelastic bound on chaos, Journal of High Energy Physics 2019, 10.1007/jhep07(2019)099 (2019).
- T. Schuster and N. Y. Yao, Operator Growth in Open Quantum Systems, Phys. Rev. Lett. 131, 160402 (2023), arXiv:2208.12272 [quant-ph] .
- B. Bhattacharjee, P. Nandy, and T. Pathak, Operator dynamics in Lindbladian SYK: a Krylov complexity perspective (2023b), arXiv:2311.00753 [quant-ph] .
- C. Liu, H. Tang, and H. Zhai, Krylov complexity in open quantum systems, Phys. Rev. Res. 5, 033085 (2023).
- N. S. Srivatsa and C. von Keyserlingk, The operator growth hypothesis in open quantum systems (2023), arXiv:2310.15376 [quant-ph] .
- P. Zhang and Z. Yu, Dynamical transition of operator size growth in quantum systems embedded in an environment, Phys. Rev. Lett. 130, 250401 (2023).
- J. Liu, R. Meyer, and Z.-Y. Xian, Operator size growth in Lindbladian SYK (2024), arXiv:2403.07115 [hep-th] .
- Y. Chen, H. Zhai, and P. Zhang, Tunable quantum chaos in the Sachdev-Ye-Kitaev model coupled to a thermal bath, Journal of High Energy Physics 2017, 10.1007/jhep07(2017)150 (2017).
- J. Maldacena and X.-L. Qi, Eternal traversable wormhole, eprint (2018), arXiv:1804.00491 [hep-th] .
- E. Cáceres, A. Misobuchi, and R. Pimentel, Sparse SYK and traversable wormholes, Journal of High Energy Physics 2021, 11 (2021), arXiv:2108.08808 [hep-th] .
- T. Nosaka and T. Numasawa, Chaos exponents of SYK traversable wormholes, Journal of High Energy Physics 2021, 10.1007/jhep02(2021)150 (2021).
- T. Nosaka and T. Numasawa, On SYK traversable wormhole with imperfectly correlated disorders, Journal of High Energy Physics 2023, 10.1007/jhep04(2023)145 (2023).
- A. O. Caldeira and A. J. Leggett, Influence of Dissipation on Quantum Tunneling in Macroscopic Systems, Phys. Rev. Lett. 46, 211 (1981).
- A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2011).
- L. M. Sieberer, M. Buchhold, and S. Diehl, Keldysh field theory for driven open quantum systems, Reports on Progress in Physics 79, 096001 (2016).
- M. Khramtsov and E. Lanina, Spectral form factor in the double-scaled SYK model, Journal of High Energy Physics 2021, 10.1007/jhep03(2021)031 (2021).
- G. Tarnopolsky, Large q𝑞qitalic_q expansion in the Sachdev-Ye-Kitaev model, Phys. Rev. D 99, 026010 (2019), arXiv:1801.06871 [hep-th] .
- C.-J. Lin and O. I. Motrunich, Out-of-time-ordered correlators in a quantum Ising chain, Phys. Rev. B 97, 144304 (2018).
- R. A. Jalabert, I. Garc\́mathrm{i}a-Mata, and D. A. Wisniacki, Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems, Phys. Rev. E 98, 062218 (2018).
- I. Garcia-Mata, R. Jalabert, and D. Wisniacki, Out-of-time-order correlations and quantum chaos, Scholarpedia 18, 55237 (2023).
- D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (2015), arXiv:1411.0660 [cond-mat.dis-nn] .
- J. Maldacena, G. J. Turiaci, and Z. Yang, Two dimensional nearly de Sitter gravity (2020), arXiv:1904.01911 [hep-th] .
- J. Cotler, K. Jensen, and A. Maloney, Low-dimensional de Sitter quantum gravity, Journal of High Energy Physics 2020 (2020).
- L. Aalsma and G. Shiu, Chaos and complementarity in de Sitter space, Journal of High Energy Physics 2020, 10.1007/jhep05(2020)152 (2020).
- Y. Gu and A. Kitaev, On the relation between the magnitude and exponent of OTOCs, Journal of High Energy Physics 2019, 10.1007/jhep02(2019)075 (2019).