Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metastability in Parabolic Equations and Diffusion Processes with a Small Parameter (2403.12333v1)

Published 19 Mar 2024 in math.PR

Abstract: We study diffusion processes in $\mathbb{R}d$ that leave invariant a finite collection of manifolds (surfaces or points) in $\mathbb{R}d$ and small perturbations of such processes. Assuming certain ergodic properties at and near the invariant surfaces, we describe the rate at which the process gets attracted to or repelled from the surface, based on the local behavior of the coefficients. For processes that include, additionally, a small non-degenerate perturbation, we describe the metastable behavior. Namely, by allowing the time scale to depend on the size of the perturbation, we observe different asymptotic distributions of the process at different time scales. Stated in PDE terms, the results provide the asymptotics, at different time scales, for the solution of the parabolic Cauchy problem when the operator that degenerates on a collection of surfaces is perturbed by a small non-degenerate term. This asymptotic behavior switches at a finite number of time scales that are calculated and does not depend on the perturbation.

Summary

We haven't generated a summary for this paper yet.