Modularity of Schur index, modular differential equations, and high-temperature asymptotics (2403.12127v2)
Abstract: In this paper we analytically explore the modularity of the flavored Schur index of 4d $\mathcal{N} = 2$ SCFTs. We focus on the $A_1$ theories of class-$\mathcal{S}$ and $\mathcal{N} = 4$ theories with $SU(N)$ gauge group. We work out the modular orbit of the flavored index and defect index, compute the dimension of the space spanned by the orbit, and provide complete basis for computing modular transformation matrices. The dimension obtained from the flavored analysis predicts the minimal order of the unflavored modular differential equation satisfied by the unflavored Schur index. With the help of modularity, we also study analytically the high-temperature asymptotics of the Schur index. In the high-temperature limit $\tau \to +i0$, we identified the (defect) Schur index of the genus-zero $A_1$ theories of class-$\mathcal{S}$ with the $S3$-partition function of the $SU(2) \times U(1)n$ star-shape quiver (with Wilson line insertion). In the identification, we observe an interesting relation between the linear-independence of defect indices and the convergence of the Wilson line partition functions.
- E. P. Verlinde, “Fusion Rules and Modular Transformations in 2D Conformal Field Theory,” Nucl. Phys. B 300 (1988) 360–376.
- J. L. Cardy, “Operator content of two-dimensional conformally invariant theories,” Nuclear Physics B 270 (1986) 186–204. https://www.sciencedirect.com/science/article/pii/0550321386905523.
- S. D. Mathur, S. Mukhi, and A. Sen, “Differential Equations for Correlators and Characters in Arbitrary Rational Conformal Field Theories,” Nucl. Phys. B 312 (1989) 15–57.
- T. Eguchi and H. Ooguri, “Differential Equations for Conformal Characters in Moduli Space,” Phys. Lett. B 203 (1988) 44.
- S. G. Naculich, “Differential equations for rational conformal characters,” Nuclear Physics B 323 no. 2, (Sept., 1989) 423–440.
- A. R. Chandra and S. Mukhi, “Towards a Classification of Two-Character Rational Conformal Field Theories,” JHEP 04 (2019) 153, arXiv:1810.09472 [hep-th].
- J.-B. Bae, Z. Duan, K. Lee, S. Lee, and M. Sarkis, “Fermionic rational conformal field theories and modular linear differential equations,” PTEP 2021 no. 8, (2021) 08B104, arXiv:2010.12392 [hep-th].
- A. Das, C. N. Gowdigere, and J. Santara, “Wronskian Indices and Rational Conformal Field Theories,” JHEP 04 (2021) 294, arXiv:2012.14939 [hep-th].
- S. Mukhi, R. Poddar, and P. Singh, “Rational CFT with three characters: the quasi-character approach,” JHEP 05 (2020) 003, arXiv:2002.01949 [hep-th].
- J. Kaidi, Y.-H. Lin, and J. Parra-Martinez, “Holomorphic modular bootstrap revisited,” JHEP 12 (2021) 151, arXiv:2107.13557 [hep-th].
- J.-B. Bae, Z. Duan, K. Lee, S. Lee, and M. Sarkis, “Bootstrapping fermionic rational CFTs with three characters,” JHEP 01 (2022) 089, arXiv:2108.01647 [hep-th].
- A. Das, C. N. Gowdigere, and J. Santara, “Classifying three-character RCFTs with Wronskian index equalling 0 or 2,” JHEP 11 (2021) 195, arXiv:2108.01060 [hep-th].
- A. Arabi Ardehali, M. Martone, and M. Rosselló, “High-temperature expansion of the Schur index and modularity,” arXiv:2308.09738 [hep-th].
- H. Jiang, “Modularity in Argyres-Douglas Theories with a=c𝑎𝑐a=citalic_a = italic_c,” arXiv:2403.05323 [hep-th].
- C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, “Infinite Chiral Symmetry in Four Dimensions,” Commun. Math. Phys. 336 no. 3, (2015) 1359–1433, arXiv:1312.5344 [hep-th].
- C. Beem, W. Peelaers, L. Rastelli, and B. C. van Rees, “Chiral algebras of class S,” JHEP 05 (2015) 020, arXiv:1408.6522 [hep-th].
- M. Lemos and W. Peelaers, “Chiral Algebras for Trinion Theories,” JHEP 02 (2015) 113, arXiv:1411.3252 [hep-th].
- D. Xie, W. Yan, and S.-T. Yau, “Chiral algebra of the Argyres-Douglas theory from M5 branes,” Phys. Rev. D 103 no. 6, (2021) 065003, arXiv:1604.02155 [hep-th].
- K. Kiyoshige and T. Nishinaka, “The Chiral Algebra of Genus Two Class 𝒮𝒮\mathcal{S}caligraphic_S Theory,” arXiv:2009.11629 [hep-th].
- C. Cordova and S.-H. Shao, “Schur Indices, BPS Particles, and Argyres-Douglas Theories,” JHEP 01 (2016) 040, arXiv:1506.00265 [hep-th].
- C. Cordova, D. Gaiotto, and S.-H. Shao, “Infrared Computations of Defect Schur Indices,” JHEP 11 (2016) 106, arXiv:1606.08429 [hep-th].
- C. Cordova, D. Gaiotto, and S.-H. Shao, “Surface Defects and Chiral Algebras,” JHEP 05 (2017) 140, arXiv:1704.01955 [hep-th].
- T. Nishinaka, S. Sasa, and R.-D. Zhu, “On the Correspondence between Surface Operators in Argyres-Douglas Theories and Modules of Chiral Algebra,” JHEP 03 (2019) 091, arXiv:1811.11772 [hep-th].
- Y. Pan and W. Peelaers, “The exact Schur index in closed form,” arXiv:2112.09705 [hep-th].
- Z. Guo, Y. Li, Y. Pan, and Y. Wang, “𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Schur index and line operators,” Phys. Rev. D 108 no. 10, (2023) 106002, arXiv:2307.15650 [hep-th].
- V. G. Kac and M. Wakimoto, “Modular invariant representations of infinite dimensional Lie algebras and superalgebras,” Proc. Nat. Acad. Sci. 85 (1988) 4956–5960.
- C. Beem and L. Rastelli, “Vertex operator algebras, Higgs branches, and modular differential equations,” JHEP 08 (2018) 114, arXiv:1707.07679 [hep-th].
- J. Kaidi, M. Martone, L. Rastelli, and M. Weaver, “Needles in a haystack. An algorithmic approach to the classification of 4d 𝒩𝒩\mathcal{N}caligraphic_N = 2 SCFTs,” JHEP 03 (2022) 210, arXiv:2202.06959 [hep-th].
- C. Beem, S. S. Razamat, and P. Singh, “Schur Indices of Class 𝒮𝒮\mathcal{S}caligraphic_S and Quasimodular Forms,” arXiv:2112.10715 [hep-th].
- V. G. Kac and M. Wakimoto, “A remark on boundary level admissible representations,” arXiv e-prints (Dec., 2016) arXiv:1612.07423, arXiv:1612.07423 [math.RT].
- T. Arakawa and K. Kawasetsu, “Quasi-lisse vertex algebras and modular linear differential equations,” arXiv:1610.05865 [math.QA].
- B. Li, H. Li, and W. Yan, “Spectral flow, twisted modules and MLDE of quasi-lisse vertex algebras,” arXiv e-prints (Apr., 2023) arXiv:2304.09681, arXiv:2304.09681 [math.QA].
- Y. Hatsuda and T. Okazaki, “Exact 𝒩𝒩\mathcal{N}caligraphic_N = 2*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT Schur line defect correlators,” JHEP 06 (2023) 169, arXiv:2303.14887 [hep-th].
- H. Zheng, Y. Pan, and Y. Wang, “Surface defects, flavored modular differential equations, and modularity,” Phys. Rev. D 106 no. 10, (2022) 105020, arXiv:2207.10463 [hep-th].
- Y. Pan and Y. Wang, “Flavored modular differential equations,” Phys. Rev. D 108 no. 8, (2023) 085027, arXiv:2306.10569 [hep-th].
- J. Bourdier, N. Drukker, and J. Felix, “The exact Schur index of 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11 (2015) 210, arXiv:1507.08659 [hep-th].
- M.-x. Huang, “Modular Anomaly Equation for Schur Index of 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Super-Yang-Mills,” arXiv:2205.00818 [hep-th].
- Y. Hatsuda and T. Okazaki, “𝒩𝒩\mathcal{N}caligraphic_N = 2*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT Schur indices,” JHEP 01 (2023) 029, arXiv:2208.01426 [hep-th].
- B.-n. Du, M.-x. Huang, and X. Wang, “Schur indices for 𝒩𝒩\mathcal{N}caligraphic_N = 4 super-Yang-Mills with more general gauge groups,” JHEP 03 (2024) 009, arXiv:2311.08714 [hep-th].
- M. Beccaria and A. Cabo-Bizet, “Giant graviton expansion of Schur index and quasimodular forms,” arXiv:2403.06509 [hep-th].
- D. Gaiotto and J. H. Lee, “The Giant Graviton Expansion,” arXiv:2109.02545 [hep-th].
- D. Gaiotto, L. Rastelli, and S. S. Razamat, “Bootstrapping the superconformal index with surface defects,” JHEP 01 (2013) 022, arXiv:1207.3577 [hep-th].
- D. Gaiotto, “N=2 dualities,” JHEP 08 (2012) 034, arXiv:0904.2715 [hep-th].
- Y. Pan and W. Peelaers, “Schur correlation functions on S3×S1superscript𝑆3superscript𝑆1S^{3}\times S^{1}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT,” JHEP 07 (2019) 013, arXiv:1903.03623 [hep-th].
- M. Dedushenko and M. Fluder, “Chiral Algebra, Localization, Modularity, Surface defects, And All That,” arXiv:1904.02704 [hep-th].
- A. Gadde and W. Yan, “Reducing the 4d Index to the S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Partition Function,” JHEP 12 (2012) 003, arXiv:1104.2592 [hep-th].
- T. Nishioka, Y. Tachikawa, and M. Yamazaki, “3d Partition Function as Overlap of Wavefunctions,” JHEP 08 (2011) 003, arXiv:1105.4390 [hep-th].
- M. Buican and T. Nishinaka, “Argyres–Douglas theories, S11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT reductions, and topological symmetries,” J. Phys. A49 no. 4, (2016) 045401, arXiv:1505.06205 [hep-th].
- M. Dedushenko, S. S. Pufu, and R. Yacoby, “A one-dimensional theory for Higgs branch operators,” JHEP 03 (2018) 138, arXiv:1610.00740 [hep-th].
- M. Dedushenko, “From VOAs to short star products in SCFT,” Commun. Math. Phys. 384 no. 1, (2021) 245–277, arXiv:1911.05741 [hep-th].
- Y. Pan and W. Peelaers, “Deformation quantizations from vertex operator algebras,” JHEP 06 (2020) 127, arXiv:1911.09631 [hep-th].
- M. Dedushenko and Y. Wang, “4d/2d →→\rightarrow→ 3d/1d: A song of protected operator algebras,” arXiv:1912.01006 [hep-th].
- F. Benini, Y. Tachikawa, and D. Xie, “Mirrors of 3d Sicilian theories,” JHEP 09 (2010) 063, arXiv:1007.0992 [hep-th].
- A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “The 4d Superconformal Index from q-deformed 2d Yang-Mills,” Phys. Rev. Lett. 106 (2011) 241602, arXiv:1104.3850 [hep-th].
- L. F. Alday, M. Bullimore, M. Fluder, and L. Hollands, “Surface defects, the superconformal index and q-deformed Yang-Mills,” JHEP 10 (2013) 018, arXiv:1303.4460 [hep-th].
- A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, “Gauge Theories and Macdonald Polynomials,” Commun. Math. Phys. 319 (2013) 147–193, arXiv:1110.3740 [hep-th].
- J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, “An Index for 4 dimensional super conformal theories,” Commun. Math. Phys. 275 (2007) 209–254, arXiv:hep-th/0510251.
- Springer, 2016. arXiv:1412.7131 [hep-th].
- J. Bourdier, N. Drukker, and J. Felix, “The 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 Schur index from free fermions,” JHEP 01 (2016) 167, arXiv:1510.07041 [hep-th].
- S. D. Mathur, S. Mukhi, and A. Sen, “On the Classification of Rational Conformal Field Theories,” Phys. Lett. B 213 (1988) 303–308.
- Z. Duan, K. Lee, S. Lee, and L. Li, “On classification of fermionic rational conformal field theories,” JHEP 02 (2023) 079, arXiv:2210.06805 [hep-th].
- T. Arakawa, “Chiral algebras of class 𝒮𝒮\mathcal{S}caligraphic_S and Moore-Tachikawa symplectic varieties,” arXiv:1811.01577 [math.RT].
- T. Arakawa, T. Kuwabara, and S. Möller, “Hilbert Schemes of Points in the Plane and Quasi-Lisse Vertex Algebras with 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 Symmetry,” arXiv:2309.17308 [math.RT].
- T. Arakawa, X. Dai, J. Fasquel, B. Li, and A. Moreau, “On a series of simple affine VOAs at non-admissible level arising from rank One 4D SCFTs,” arXiv:2403.04472 [math.RT].
- W. Peelaers , unpublished.
- Y. Pan, Y. Wang, and H. Zheng, “Defects, modular differential equations, and free field realization of N=4 vertex operator algebras,” Phys. Rev. D 105 no. 8, (2022) 085005, arXiv:2104.12180 [hep-th].
- Y. Zhu, “Modular invariance of characters of vertex operator algebras,” Journal of the American Mathematical Society 9 no. 1, (1996) 237–302.
- M. R. Gaberdiel and C. A. Keller, “Modular differential equations and null vectors,” JHEP 09 (2008) 079, arXiv:0804.0489 [hep-th].
- M. P. Tuite and H. D. Van, “On Exceptional Vertex Operator (Super) Algebras,” arXiv:1401.5229 [math.QA].
- L. Bianchi and M. Lemos, “Superconformal surfaces in four dimensions,” JHEP 06 (2020) 056, arXiv:1911.05082 [hep-th].
- D. Gang, E. Koh, and K. Lee, “Line Operator Index on S1×S3superscript𝑆1superscript𝑆3S^{1}\times S^{3}italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,” JHEP 05 (2012) 007, arXiv:1201.5539 [hep-th].
- F. Bonetti, C. Meneghelli, and L. Rastelli, “VOAs labelled by complex reflection groups and 4d SCFTs,” JHEP 05 (2019) 155, arXiv:1810.03612 [hep-th].
- A. Arabi Ardehali, “High-temperature asymptotics of supersymmetric partition functions,” JHEP 07 (2016) 025, arXiv:1512.03376 [hep-th].
- S. Benvenuti and S. Pasquetti, “3D-partition functions on the sphere: exact evaluation and mirror symmetry,” JHEP 05 (2012) 099, arXiv:1105.2551 [hep-th].