Characterizing the Entanglement of Anyonic Systems using the Anyonic Partial Transpose (2403.12121v2)
Abstract: Entanglement of mixed quantum states can be quantified using the partial transpose and its corresponding entanglement measure, the logarithmic negativity. Recently, the notion of partial transpose has been extended to systems of anyons, which are exotic quasiparticles whose exchange statistics go beyond the bosonic and fermionic case. Studying the fundamental properties of this anyonic partial transpose, we first reveal that when applied to the special case of fermionic systems, it can be reduced to the fermionic partial transpose or its twisted variant depending on whether or not a boundary Majorana fermion is present. Focusing on ground state properties, we find that the anyonic partial transpose captures both the correct entanglement scaling for gapless systems, as predicted by conformal field theory, and the phase transition between a topologically trivial and a nontrivial phase. For non-abelian anyons and the bipartition geometry, we find a rich multiplet structure in the eigenvalues of the partial transpose, the so-called negativity spectrum, and reveal the possibility of defining both a charge- and an imbalance-resolved negativity.
- J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B (1971-1996) 37, 1 (1977).
- F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49, 957 (1982b).
- R. B. Laughlin, Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983).
- B. I. Halperin, Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett. 52, 1583 (1984).
- D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional statistics and the quantum hall effect, Phys. Rev. Lett. 53, 722 (1984).
- X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces, Phys. Rev. B 41, 9377 (1990).
- A. Stern, Anyons and the quantum Hall effect—a pedagogical review, Ann. Phys. 323, 204 (2008), january Special Issue 2008.
- X. G. WEN, Topological orders in rigid states, Intl. J. Mod. Phys. B 04, 239 (1990), https://doi.org/10.1142/S0217979290000139 .
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).
- L. Savary and L. Balents, Quantum spin liquids: a review, Reports on Progress in Physics 80, 016502 (2016).
- O. Hart and C. Castelnovo, Entanglement negativity and sudden death in the toric code at finite temperature, Phys. Rev. B 97, 144410 (2018).
- T.-C. Lu, T. H. Hsieh, and T. Grover, Detecting topological order at finite temperature using entanglement negativity, Phys. Rev. Lett. 125, 116801 (2020).
- T.-C. Lu and T. Grover, Structure of quantum entanglement at a finite temperature critical point, Phys. Rev. Research 2, 043345 (2020).
- T.-C. Lu and T. Grover, Singularity in entanglement negativity across finite-temperature phase transitions, Phys. Rev. B 99, 075157 (2019).
- C.-C. Liu, J. Geoffrion, and W. Witczak-Krempa, Entanglement negativity versus mutual information in the quantum Hall effect and beyond (2022), arXiv:2208.12819 [cond-mat.str-el] .
- J. Y. Lee, Y.-Z. You, and C. Xu, Symmetry protected topological phases under decoherence (2024), arXiv:2210.16323 [cond-mat.str-el] .
- J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
- A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996).
- M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Physics Letters A 223, 1 (1996).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
- V. Eisler and Z. Zimboras, On the partial transpose of fermionic Gaussian states, New J. Phys. 17, 053048 (2015).
- H. Shapourian, K. Shiozaki, and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017a).
- H. Shapourian, R. S. K. Mong, and S. Ryu, Anyonic partial transpose I: Quantum information aspects (2020), arXiv:2012.02222 [quant-ph] .
- P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109, 130502 (2012).
- P. Calabrese, J. Cardy, and E. Tonni, Finite temperature entanglement negativity in conformal field theory, J. Phys. A: Math. Theor. 48, 015006 (2014).
- H. Shapourian and S. Ryu, Finite-temperature entanglement negativity of free fermions, J. Stat. Mech.: Theory Exp. 2019 (4), 043106.
- Y. A. Lee and G. Vidal, Entanglement negativity and topological order, Phys. Rev. A 88, 042318 (2013).
- C. Castelnovo, Negativity and topological order in the toric code, Phys. Rev. A 88, 042319 (2013).
- X. Wen, P.-Y. Chang, and S. Ryu, Topological entanglement negativity in Chern-Simons theories, Journal of High Energy Physics 2016, 12 (2016a).
- C. Yin and S. Liu, Mixed-state entanglement measures in topological order, Phys. Rev. B 108, 035152 (2023).
- G. Parez, C. Berthiere, and W. Witczak-Krempa, Separability and entanglement of resonating valence-bond states, SciPost Phys. 15, 066 (2023).
- R. Sohal and S. Ryu, Entanglement in tripartitions of topological orders: A diagrammatic approach, Phys. Rev. B 108, 045104 (2023).
- W. DeGottardi, Topological insulating phases of non-Abelian anyonic chains, Phys. Rev. B 90, 075129 (2014).
- P. Ruggiero, V. Alba, and P. Calabrese, Negativity spectrum of one-dimensional conformal field theories, Phys. Rev. B 94, 195121 (2016a).
- G. B. Mbeng, V. Alba, and P. Calabrese, Negativity spectrum in 1d gapped phases of matter, Journal of Physics A: Mathematical and Theoretical 50, 194001 (2017).
- E. Cornfeld, M. Goldstein, and E. Sela, Imbalance entanglement: Symmetry decomposition of negativity, Phys. Rev. A 98, 032302 (2018).
- S. Murciano, R. Bonsignori, and P. Calabrese, Symmetry decomposition of negativity of massless free fermions, SciPost Phys. 10, 111 (2021).
- H. Shapourian, K. Shiozaki, and S. Ryu, Many-body topological invariants for fermionic symmetry-protected topological phases, Phys. Rev. Lett. 118, 216402 (2017b).
- W. Choi, M. Knap, and F. Pollmann, Finite temperature entanglement negativity of fermionic symmetry protected topological phases and quantum critical points in one dimension (2023), arXiv:2310.20566 [cond-mat.str-el] .
- V. Eisler and Z. Zimborás, On the partial transpose of fermionic gaussian states, New Journal of Physics 17, 053048 (2015).
- S. H. Simon, Topological Quantum: Lecture Notes and Proto-Book (2021).
- A. Bernevig and T. Neupert, Topological superconductors and category theory, Lecture Notes of the Les Houches Summer School: Topological Aspects of Condensed Matter Physics , 63 (2017).
- P. Bonderson, K. Shtengel, and J. Slingerland, Interferometry of non-Abelian anyons, Annals of Physics 323, 2709 (2008).
- P. H. Bonderson, Non-Abelian anyons and interferometry, Ph.D. thesis, California Institute of Technology (2007).
- P. Bonderson, Measuring Topological Order, Phys. Rev. Research 3, 033110 (2021).
- P. Bonderson, C. Knapp, and K. Patel, Anyonic entanglement and topological entanglement entropy, Ann. of Phys. 385, 399 (2017).
- R. N. C. Pfeifer and S. Singh, Finite density matrix renormalization group algorithm for anyonic systems, Phys. Rev. B 92, 115135 (2015).
- P. Bonderson, Splitting the topological degeneracy of non-abelian anyons, Phys. Rev. Lett. 103, 110403 (2009).
- F. Haldane, Continuum dynamics of the 1-D heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Physics Letters A 93, 464 (1983).
- P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.: Theory Exp. 2004 (06), P06002.
- P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A: Math. Theor. 42, 504005 (2009).
- P. Calabrese, J. Cardy, and E. Tonni, Entanglement negativity in extended systems: a field theoretical approach, Journal of Statistical Mechanics: Theory and Experiment 2013, P02008 (2013).
- P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory (Springer New York, 2012).
- B. Zeng and D. L. Zhou, Topological and error-correcting properties for symmetry-protected topological order, Europhysics Letters 113, 56001 (2016).
- H. Li and F. D. M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states, Phys. Rev. Lett. 101, 010504 (2008).
- N. Bray-Ali, L. Ding, and S. Haas, Topological order in paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries, Phys. Rev. B 80, 180504 (2009).
- H. Yao and X.-L. Qi, Entanglement entropy and entanglement spectrum of the Kitaev model, Phys. Rev. Lett. 105, 080501 (2010).
- E. Prodan, T. L. Hughes, and B. A. Bernevig, Entanglement spectrum of a disordered topological chern insulator, Phys. Rev. Lett. 105, 115501 (2010).
- L. Fidkowski, Entanglement spectrum of topological insulators and superconductors, Phys. Rev. Lett. 104, 130502 (2010).
- T. L. Hughes, E. Prodan, and B. A. Bernevig, Inversion-symmetric topological insulators, Phys. Rev. B 83, 245132 (2011).
- X.-L. Qi, H. Katsura, and A. W. W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108, 196402 (2012).
- B. Swingle and T. Senthil, Geometric proof of the equality between entanglement and edge spectra, Phys. Rev. B 86, 045117 (2012).
- A. Chandran, V. Khemani, and S. L. Sondhi, How universal is the entanglement spectrum?, Phys. Rev. Lett. 113, 060501 (2014).
- N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains and luttinger liquids, Journal of Statistical Mechanics: Theory and Experiment 2014, P11013 (2014).
- M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120, 200602 (2018).
- J. Hauschild and F. Pollmann, Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy), SciPost Phys. Lect. Notes , 5 (2018).
- N. Kirchner, W. Choi, and F. Pollmann, Characterizing the entanglement of anyonic systems using the anyonic partial transpose, 10.5281/zenodo.10825841 (2024), Zenodo.
- S. Rommer and S. Östlund, Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group, Phys. Rev. B 55, 2164 (1997).
- I. P. McCulloch, From density-matrix renormalization group to matrix product states, Journal of Statistical Mechanics: Theory and Experiment 2007, P10014 (2007).
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
- R. König and E. Bilgin, Anyonic entanglement renormalization, Phys. Rev. B 82, 125118 (2010).
- G. Vidal, Efficient simulation of one-dimensional quantum many-body systems, Phys. Rev. Lett. 93, 040502 (2004).
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
- P. Ruggiero, V. Alba, and P. Calabrese, Entanglement negativity in random spin chains, Phys. Rev. B 94, 035152 (2016b).