Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuron-centric Hebbian Learning (2403.12076v2)

Published 16 Feb 2024 in cs.NE, cs.AI, and cs.LG

Abstract: One of the most striking capabilities behind the learning mechanisms of the brain is the adaptation, through structural and functional plasticity, of its synapses. While synapses have the fundamental role of transmitting information across the brain, several studies show that it is the neuron activations that produce changes on synapses. Yet, most plasticity models devised for artificial Neural Networks (NNs), e.g., the ABCD rule, focus on synapses, rather than neurons, therefore optimizing synaptic-specific Hebbian parameters. This approach, however, increases the complexity of the optimization process since each synapse is associated to multiple Hebbian parameters. To overcome this limitation, we propose a novel plasticity model, called Neuron-centric Hebbian Learning (NcHL), where optimization focuses on neuron- rather than synaptic-specific Hebbian parameters. Compared to the ABCD rule, NcHL reduces the parameters from $5W$ to $5N$, being $W$ and $N$ the number of weights and neurons, and usually $N \ll W$. We also devise a ``weightless'' NcHL model, which requires less memory by approximating the weights based on a record of neuron activations. Our experiments on two robotic locomotion tasks reveal that NcHL performs comparably to the ABCD rule, despite using up to $\sim97$ times less parameters, thus allowing for scalable plasticity

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andrea Ferigo (3 papers)
  2. Elia Cunegatti (8 papers)
  3. Giovanni Iacca (44 papers)

Summary

We haven't generated a summary for this paper yet.