Towards a Wireless Physical-Layer Foundation Model: Challenges and Strategies (2403.12065v1)
Abstract: AI plays an important role in the dynamic landscape of wireless communications, solving challenges unattainable by traditional approaches. This paper discusses the evolution of wireless AI, emphasizing the transition from isolated task-specific models to more generalizable and adaptable AI models inspired by recent successes in LLMs and computer vision. To overcome task-specific AI strategies in wireless networks, we propose a unified wireless physical-layer foundation model (WPFM). Challenges include the design of effective pre-training tasks, support for embedding heterogeneous time series and human-understandable interaction. The paper presents a strategic framework, focusing on embedding wireless time series, self-supervised pre-training, and semantic representation learning. The proposed WPFM aims to understand and describe diverse wireless signals, allowing human interactivity with wireless networks. The paper concludes by outlining next research steps for WPFMs, including the integration with LLMs.
- J. Hoydis, F. A. Aoudia, A. Valcarce, and H. Viswanathan, “Toward a 6g ai-native air interface,” IEEE Communications Magazine, vol. 59, no. 5, pp. 76–81, 2021.
- A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, ai-based, or both?,” IEEE Transactions on Communications, vol. 67, no. 10, pp. 7331–7376, 2019.
- J. Fontaine, E. Fonseca, A. Shahid, M. Kist, L. A. DaSilva, I. Moerman, and E. De Poorter, “Towards low-complexity wireless technology classification across multiple environments,” Ad Hoc Networks, vol. 91, p. 101881, 2019.
- Y. Cheng, B. Yin, and S. Zhang, “Deep learning for wireless networking: The next frontier,” IEEE Wireless Communications, vol. 28, no. 6, pp. 176–183, 2021.
- J. Fontaine, F. Che, A. Shahid, B. Van Herbruggen, Q. Z. Ahmed, W. B. Abbas, and E. De Poorter, “Transfer learning for uwb error correction and (n) los classification in multiple environments,” IEEE Internet of Things Journal, 2023.
- M. K. Shehzad, L. Rose, M. M. Butt, I. Z. Kovács, M. Assaad, and M. Guizani, “Artificial intelligence for 6g networks: Technology advancement and standardization,” IEEE Vehicular Technology Magazine, vol. 17, no. 3, pp. 16–25, 2022.
- M. Kulin, T. Kazaz, E. De Poorter, and I. Moerman, “A survey on machine learning-based performance improvement of wireless networks: Phy, mac and network layer,” Electronics, vol. 10, no. 3, p. 318, 2021.
- C. T. Nguyen, N. Van Huynh, N. H. Chu, Y. M. Saputra, D. T. Hoang, D. N. Nguyen, Q.-V. Pham, D. Niyato, E. Dutkiewicz, and W.-J. Hwang, “Transfer learning for wireless networks: A comprehensive survey,” Proceedings of the IEEE, vol. 110, no. 8, pp. 1073–1115, 2022.
- C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, et al., “A comprehensive survey on pretrained foundation models: A history from bert to chatgpt,” arXiv preprint arXiv:2302.09419, 2023.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
- Y. Liu, X. Gao, J. Han, L. Liu, and L. Shao, “Zero-shot learning via a specific rank-controlled semantic autoencoder,” Pattern Recognition, vol. 122, p. 108237, 2022.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning, pp. 8748–8763, PMLR, 2021.
- A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever, “Zero-shot text-to-image generation,” in International Conference on Machine Learning, pp. 8821–8831, PMLR, 2021.
- A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh, A. Brohan, et al., “Open x-embodiment: Robotic learning datasets and rt-x models,” arXiv preprint arXiv:2310.08864, 2023.
- L.-H. Shen, K.-T. Feng, and L. Hanzo, “Five facets of 6g: Research challenges and opportunities,” ACM Comput. Surv., vol. 55, feb 2023.
- C. Fischione, M. Chafii, Y. Deng, and M. Erol-Kantarci, “Data sets for machine learning in wireless communications and networks,” IEEE Communications Magazine, vol. 61, no. 9, pp. 80–81, 2023.
- Z. Lin, G. Qu, Q. Chen, X. Chen, Z. Chen, and K. Huang, “Pushing large language models to the 6g edge: Vision, challenges, and opportunities,” arXiv preprint arXiv:2309.16739, 2023.
- A. Maatouk, N. Piovesan, F. Ayed, A. De Domenico, and M. Debbah, “Large language models for telecom: Forthcoming impact on the industry,” arXiv preprint arXiv:2308.06013, 2023.
- L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large language models for telecom: The next big thing?,” arXiv preprint arXiv:2306.10249, 2023.
- W. Tong, C. Peng, T. Yang, F. Wang, J. Deng, R. Li, L. Yang, H. Zhang, D. Wang, M. Ai, et al., “Ten issues of netgpt,” arXiv preprint arXiv:2311.13106, 2023.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- Y. Wang, Z. Gao, D. Zheng, S. Chen, D. Gunduz, and H. V. Poor, “Transformer-empowered 6g intelligent networks: From massive mimo processing to semantic communication,” IEEE Wireless Communications, 2022.
- P. Wang, Y. Cheng, B. Dong, R. Hu, and S. Li, “Wir-transformer: Using transformers for wireless interference recognition,” IEEE Wireless Communications Letters, vol. 11, no. 12, pp. 2472–2476, 2022.
- L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert: A simple and performant baseline for vision and language,” arXiv preprint arXiv:1908.03557, 2019.
- M. Kotaru, “Adapting foundation models for information synthesis of wireless communication specifications,” arXiv preprint arXiv:2308.04033, 2023.
- Z. Zhou, R. Zhong, C. Yang, Y. Wang, X. Yang, and W. Shen, “A k-variate time series is worth k words: Evolution of the vanilla transformer architecture for long-term multivariate time series forecasting,” arXiv preprint arXiv:2212.02789, 2022.