Higher time-derivative theories from space-time interchanged integrable field theories (2403.11949v2)
Abstract: We compare a relativistic and a nonrelativistic version of Ostrogradsky's method for higher-time derivative theories extended to scalar field theories and consider as an alternative a multi-field variant. We apply the schemes to space-time rotated modified Korteweg-de Vries systems and, exploiting their integrability, to Hamiltonian systems built from space-time rotated inverse Legendre transformed higher-order charges of these systems. We derive the equal-time Poisson bracket structures of these theories, establish the integrability of the latter theories by means of the Painlev\'e test and construct exact analytical period benign solutions in terms of Jacobi elliptic functions to the classical equations of motion. The classical energies of these partially complex solutions are real when they respect a certain modified CPT-symmetry and complex when this symmetry is broken. The higher order Cauchy and initial-boundary value problem are addressed analytically and numerically. Finally, we provide the explicit quantization of the simplest mKdV system, exhibiting the usual conundrum of having the choice between either having to deal with a theory that includes non-normalizable states or spectra that are unbounded from below. In our non-Hermitian system the choice is dictated by the correct sign in the decay width.
- M. Ostrogradsky, Mémoire sur les équations différentielles relatives an probléme des isopérimétres, volume VI 4, 1850.
- R. P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10(8), 32243 (2015).
- K. S. Stelle, Renormalization of higher-derivative quantum gravity, Phys. Rev. D 16(4), 953 (1977).
- L. Modesto and I. L. Shapiro, Superrenormalizable quantum gravity with complex ghosts, Phys. Lett. B 755, 279–284 (2016).
- A. Salvio and A. Strumia, Quantum mechanics of 4-derivative theories, The EPJ C 76, 1–15 (2016).
- No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100(11), 110402 (2008).
- M. Raidal and H. Veermäe, On the quantisation of complex higher derivative theories and avoiding the Ostrogradsky ghost, Nucl. Phys. B 916, 607–626 (2017).
- A. Smilga, Benign vs. malicious ghosts in higher-derivative theories, Nucl. Phys. B 706(3), 598–614 (2005).
- A. Smilga, On exactly solvable ghost-ridden systems, Phys. Lett. A 389, 127104 (2021).
- T. Damour and A. Smilga, Dynamical systems with benign ghosts, Phys. Rev. D 105, 045018 (2022).
- A. Smilga, Benign ghosts in higher-derivative systems, in J. of Phys.: Conf. Series, 2028 012023 (2021).
- S. W. Hawking and T. Hertog, Living with ghosts, Phys. Rev. D 65(10), 103515 (2002).
- Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 2010, 008 (2010).
- H. A. Weldon, Finite-temperature retarded and advanced fields, Nucl. Phys. B 534(1-2), 467–490 (1998).
- S. Mignemi and D. L. Wiltshire, Black holes in higher-derivative gravity theories, Phys. Rev. D 46(4), 1475 (1992).
- V. O. Rivelles, Triviality of higher derivative theories, Phys. Lett. B 577(3-4), 137–142 (2003).
- BRST analysis of general mechanical systems, J. of Geo. and Phys. 74, 164–184 (2013).
- M. S. Plyushchay, Massless point particle with rigidity, Mod. Phys. Lett. A 4(09), 837–847 (1989).
- M. S. Plyushchay, Massless particle with rigidity as a model for the description of bosons and fermions, Phys. Lett. B 243(4), 383–388 (1990).
- M. Dine and N. Seiberg, Comments on higher derivative operators in some SUSY field theories, Phys. Lett. B 409(1-4), 239–244 (1997).
- A. Smilga, Ultraviolet divergences in non-renormalizable supersymmetric theories, Phys. of Part. and Nucl. Lett. 14, 245–260 (2017).
- M. Pavšič, Stable self-interacting Pais–Uhlenbeck oscillator, Mod. Phys. Lett. A 28(36), 1350165 (2013).
- Classical and quantum stability of higher-derivative dynamics, EPJ C 74, 1–19 (2014).
- A perturbation theory approach to the stability of the Pais-Uhlenbeck oscillator, J. Math. Phys. 58(9) (2017).
- Higher-derivative harmonic oscillators: stability of classical dynamics and adiabatic invariants, EPJ C 79, 1–8 (2019).
- Ghosts without runaway instabilities, Phys. Rev. Lett. 128(4), 041301 (2022).
- Global and local stability for ghosts coupled to positive energy degrees of freedom, JCAP 2023(11), 031 (2023).
- A. Fring and B. Turner, Higher derivative Hamiltonians with benign ghosts from affine Toda lattices, J. Phys. A: Math. Theor. 56, 295203 (2023).
- A. Fring and B. Turner, Integrable scattering theory with higher derivative Hamiltonians, Eur. Phys. J. Plus 138(12), 1136 (2023).
- H. Motohashi and T. Suyama, Quantum Ostrogradsky theorem, JHEP 2020(9), 1–10 (2020).
- F. J. De Urries and J. Julve, Ostrogradski formalism for higher-derivative scalar field theories, J. Phys. A: Math. and Gen. 31(33), 6949 (1998).
- R. Thibes, Natural higher-derivatives generalization for the Klein–Gordon equation, Mod. Phys. Lett. A 36(28), 2150205 (2021).
- H. A. Weldon, Quantization of higher-derivative field theories, Ann. Phys. 305(2), 137–150 (2003).
- Y. Nutku, Hamiltonian formulation of the KdV equation, J. Math. Phys. 25, 2007–2008 (1984).
- G. Bowtell and A. E. G. Stuart, A particle representation for the Korteweg-de Vries solitons, J. Math. Phys. 24, 969–981 (1983).
- R. M. Miura, The Korteweg-de Vries Equation: A Survey of Results, SIAM Review 18, 412–459 (1976).
- P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. France 28, 201–261 (1900).
- A connection between nonlinear evolution equations and ordinary differential equations of P-type. II, J. Math. Phys. 21, 1006–1015 (1980).
- The Painlevé property for partial differential equations, J. Math. Phys. 24, 522–526 (1983).
- J. Weiss, The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24, 1405–1413 (1983).
- Analytic and Asymptotic Methods for Nonlinear Singularity Analysis, Lect. Notes Phys. 638, 175–208 (2004).
- B. Grammaticos and A. Ramani, Integrability- and How to detect it, Lect. Notes Phys. 638, 31–94 (2004).
- The extended Jacobian Elliptic function expansion method and its application to nonlinear wave equations, Fizika A 12(4), 161–170 (2003).
- A. Fring and T. Taira, Complex BPS solitons with real energies from duality, J. of Phys. A: Mathe. and Theor. 53(45), 455701 (2020).
- M. Wadati, Bäcklund transformation for solutions of the modified Korteweg-de Vries equation, JPSJ 36(5), 1498–1498 (1974).
- J. Schiff, Bäcklund transformations of MKdV and Painleve equations, Nonlinearity 7(1), 305 (1994).
- Soliton defects in one-gap periodic system and exotic supersymmetry, Phys. Rev. D 90(12), 125041 (2014).
- V. V. Nesterenko, Instability of classical dynamics in theories with higher derivatives, Phys. Rev. D 75(8), 087703 (2007).
- A. Szegleti and F. Márkus, Dissipation in Lagrangian formalism, Entropy 22(9), 930 (2020).
- J. Sanders, A dual-oscillator approach to complex-stiffness damping based on fourth-order dynamics, Nonlin. Dan. 109, 285–301 (2022).
- Darboux transformation and solitons, (Springer, Berlin) (1991).
- L. Bianchi, Vorlesungen über Differentialgeometrie, (Teubner, Leipzig) (1927).
- G. L. Lamb Jr, Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 43, 99–124 (1971).
- G. Dunne and J. Feinberg, Self-isospectral periodic potentials and supersymmetric quantum mechanics, Phys. Rev. D 57(2), 1271 (1998).
- Degenerate multi-solitons in the sine-Gordon equation, J. Phys. A: Math. Theor. 50, 435201 (2017).