Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bangladesh Agricultural Knowledge Graph: Enabling Semantic Integration and Data-driven Analysis--Full Version (2403.11920v2)

Published 18 Mar 2024 in cs.CY and cs.DB

Abstract: In Bangladesh, agriculture is a crucial driver for addressing Sustainable Development Goal 1 (No Poverty) and 2 (Zero Hunger), playing a fundamental role in the economy and people's livelihoods. To enhance the sustainability and resilience of the agriculture industry through data-driven insights, the Bangladesh Bureau of Statistics and other organizations consistently collect and publish agricultural data on the Web. Nevertheless, the current datasets encounter various challenges: 1) they are presented in an unsustainable, static, read-only, and aggregated format, 2) they do not conform to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, and 3) they do not facilitate interactive analysis and integration with other data sources. In this paper, we present a thorough solution, delineating a systematic procedure for developing BDAKG: a knowledge graph that semantically and analytically integrates agriculture data in Bangladesh. BDAKG incorporates multidimensional semantics, is linked with external knowledge graphs, is compatible with OLAP, and adheres to the FAIR principles. Our experimental evaluation centers on evaluating the integration process and assessing the quality of the resultant knowledge graph in terms of completeness, timeliness, FAIRness, OLAP compatibility and data-driven analysis. Our federated data analysis recommend a strategic approach focused on decreasing CO$_2$ emissions, fostering economic growth, and promoting sustainable forestry.

Citations (1)

Summary

We haven't generated a summary for this paper yet.