Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical method for nonlinear Kolmogorov PDEs via sensitivity analysis (2403.11910v2)

Published 18 Mar 2024 in math.NA, cs.NA, math.OC, and math.PR

Abstract: We examine nonlinear Kolmogorov partial differential equations (PDEs). Here the nonlinear part of the PDE comes from its Hamiltonian where one maximizes over all possible drift and diffusion coefficients which fall within a $\varepsilon$-neighborhood of pre-specified baseline coefficients. Our goal is to quantify and compute how sensitive those PDEs are to such a small nonlinearity, and then use the results to develop an efficient numerical method for their approximation. We show that as $\varepsilon\downarrow 0$, the nonlinear Kolmogorov PDE equals the linear Kolmogorov PDE defined with respect to the corresponding baseline coefficients plus $\varepsilon$ times a correction term which can be also characterized by the solution of another linear Kolmogorov PDE involving the baseline coefficients. As these linear Kolmogorov PDEs can be efficiently solved in high-dimensions by exploiting their Feynman-Kac representation, our derived sensitivity analysis then provides a Monte Carlo based numerical method which can efficiently solve these nonlinear Kolmogorov equations. We establish an error and complexity analysis for our numerical method. Moreover, we provide numerical examples in up to 100 dimensions to empirically demonstrate the applicability of our numerical method.

Summary

We haven't generated a summary for this paper yet.