Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry-based Abstraction Algorithm for Accelerating Symbolic Control Synthesis (2403.11816v1)

Published 18 Mar 2024 in eess.SY and cs.SY

Abstract: We propose an efficient symbolic control synthesis algorithm for equivariant continuous-time dynamical systems to satisfy reach-avoid specifications. The algorithm exploits dynamical symmetries to construct lean abstractions to avoid redundant computations during synthesis. Our proposed algorithm adds another layer of abstraction over the common grid-based discrete abstraction before solving the synthesis problem. It combines each set of grid cells that are at a similar relative position from the targets and nearby obstacles, defined by the symmetries, into a single abstract state. It uses this layer of abstraction to guide the order by which actions are explored during synthesis over the grid-based abstraction. We demonstrate the potential of our algorithm by synthesizing a reach-avoid controller for a 3-dimensional ship model with translation and rotation symmetries in the special Euclidean group SE(2).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Assume-guarantee abstraction refinement meets hybrid systems. In E. Yahav, editor, Hardware and Software: Verification and Testing, pages 116–131, Cham, 2014.
  2. Symmetry-preserving observers. IEEE Transactions on Automatic Control, 53(11):2514–2526, 2008.
  3. La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile : leçons professées à la sorbonne. 1937.
  4. T. S. Cohen and M. Welling. Group equivariant convolutional networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, page 2990?2999. JMLR.org, 2016.
  5. Lie symmetries applied to interval integration. Automatica, 144(C), oct 2022.
  6. Automatic rectangular refinement of affine hybrid systems. FORMATS’05, page 144–161, Berlin, Heidelberg, 2005. Springer-Verlag.
  7. C2e2: A verification tool for stateflow models. In Proceedings of the 21st TACAS - Volume 9035, page 68–82, Berlin, Heidelberg, 2015. Springer-Verlag.
  8. Fast and guaranteed safe controller synthesis for nonlinear vehicle models. In S. K. Lahiri and C. Wang, editors, CAV, 2020.
  9. T. I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd, 2011.
  10. A. Girard and G. J. Pappas. Hierarchical control system design using approximate simulation. Automatica, 45(2):566–571, 2009.
  11. A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–57, jun 1984.
  12. T. A. Henzinger. The theory of hybrid automata. In 11th Annual IEEE Symposium on Logic in Computer Science, pages 278–292, 1996.
  13. B. Jakubczyk. Symmetries of nonlinear control systems and their symbols. In Canadian Math. Conf. Proceed, volume 25, pages 183–198, 1998.
  14. The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool, November 2005. Also available as Technical Report MIT-LCS-TR-917, MIT.
  15. J. Maidens and M. Arcak. Exploiting symmetry for discrete-time reachability computations. IEEE Control Systems Letters, 2(2):213–217, 2018.
  16. Symmetry reduction for dynamic programming and application to mri. In 2017 ACC, pages 4625–4630, 2017.
  17. A. Majumdar and R. Tedrake. Funnel libraries for real-time robust feedback motion planning. The International Journal of Robotics Research, 36(8):947–982, 2017.
  18. Tira: Toolbox for interval reachability analysis. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’19, page 224–229, New York, NY, USA, 2019. ACM.
  19. Continuous and discrete abstractions for planning, applied to ship docking. ArXiv, abs/1911.09773, 2020.
  20. E. Noether. Invarianten beliebiger differentialausdrücke. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:37–44, 1918.
  21. Decentralized supervisory control of networks of nonlinear control systems. IEEE Transactions on Automatic Control, 63(9):2803–2817, 2018.
  22. Feedback refinement relations for the synthesis of symbolic controllers. IEEE Transactions on Automatic Control, 62(4):1781–1796, 2017.
  23. Hare: A hybrid abstraction refinement engine for verifying non-linear hybrid automata. In A. Legay and T. Margaria, editors, TACAS, pages 573–588, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.
  24. G. Russo and J.-J. E. Slotine. Symmetries, stability, and control in nonlinear systems and networks. Physical Review E, 84(4):041929, 2011.
  25. Scenechecker: Boosting scenario verification using symmetry abstractions. In A. Silva and K. R. M. Leino, editors, Computer Aided Verification, pages 580–594, Cham, 2021. Springer International Publishing.
  26. H. Sibai and S. Mitra. Symmetry-based abstractions for hybrid automata. IEEE Transactions on Automatic Control, pages 1–8, 2023.
  27. Multi-agent safety verification using symmetry transformations. In A. Biere and D. Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 173–190, Cham, 2020. Springer International Publishing.
  28. Using symmetry transformations in equivariant dynamical systems for their safety verification. In ATVA, pages 98–114, Cham, 2019.
  29. P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach. Springer Publishing Company, Incorporated, 1st edition, 2009.
  30. Mdp homomorphic networks: Group symmetries in reinforcement learning. In NeurIPS, volume 33, pages 4199–4210. Curran Associates, Inc., 2020.

Summary

We haven't generated a summary for this paper yet.