Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Co-Design of Control Barrier Function and Safe Feedback Controller Under Input Constraints (2403.11763v1)

Published 18 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: We study the problem of co-designing control barrier functions (CBF) and linear state feedback controllers for continuous-time linear systems. We achieve this by means of a single semi-definite optimization program. Our formulation can handle mixed-relative degree problems without requiring an explicit safe controller. Different L-norm based input limitations can be introduced as convex constraints in the proposed program. We demonstrate our results on an omni-directional car numerical example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier certificates,” in HSCC, vol. 2993, pp. 477–492, Springer, 2004.
  2. P. Wieland and F. Allgöwer, “Constructive safety using control barrier functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467, 2007.
  3. A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in 53rd IEEE Conference on Decision and Control, pp. 6271–6278, IEEE, 2014.
  4. M. Nagumo, “Über die lage der integralkurven gewöhnlicher differentialgleichungen,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 24, pp. 551–559, 1942.
  5. A. Clark, “A semi-algebraic framework for verification and synthesis of control barrier functions,” arXiv preprint arXiv:2209.00081, 2022.
  6. A. Clark, “Verification and synthesis of control barrier functions,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6105–6112, IEEE, 2021.
  7. W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,” in 2019 IEEE 58th conference on decision and control (CDC), pp. 474–479, IEEE, 2019.
  8. X. Tan, W. S. Cortez, and D. V. Dimarogonas, “High-order barrier functions: Robustness, safety, and performance-critical control,” IEEE Transactions on Automatic Control, vol. 67, no. 6, pp. 3021–3028, 2021.
  9. M. Krstic, “Inverse optimal safety filters,” IEEE Transactions on Automatic Control, 2023.
  10. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC), pp. 322–328, IEEE, 2016.
  11. A. J. Taylor, P. Ong, T. G. Molnar, and A. D. Ames, “Safe backstepping with control barrier functions,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 5775–5782, IEEE, 2022.
  12. D. Bertsekas, “Infinite time reachability of state-space regions by using feedback control,” IEEE Transactions on Automatic Control, vol. 17, no. 5, pp. 604–613, 1972.
  13. I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance invariant sets for discrete-time linear systems,” Mathematical problems in engineering, vol. 4, no. 4, pp. 317–367, 1998.
  14. E. B. Castelan and J.-C. Hennet, “On invariant polyhedra of continuous-time linear systems,” IEEE Transactions on Automatic control, vol. 38, no. 11, pp. 1680–1685, 1993.
  15. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
  16. Y. Li and Z. Lin, “A complete characterization of the maximal contractively invariant ellipsoids of linear systems under saturated linear feedback,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 179–185, 2014.
  17. Z. Lin and L. Lv, “Set invariance conditions for singular linear systems subject to actuator saturation,” IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2351–2355, 2007.
  18. J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier–value functions for safety-critical control,” in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6814–6821, IEEE, 2021.
  19. P.-F. Massiani, S. Heim, F. Solowjow, and S. Trimpe, “Safe value functions,” IEEE Transactions on Automatic Control, 2022.
  20. K. Margellos and J. Lygeros, “Hamilton–Jacobi formulation for reach–avoid differential games,” IEEE Transactions on automatic control, vol. 56, no. 8, pp. 1849–1861, 2011.
  21. J. Lygeros, “On reachability and minimum cost optimal control,” Automatica, vol. 40, no. 6, pp. 917–927, 2004.
  22. I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp. 947–957, 2005.
  23. C. J. Tomlin, J. Lygeros, and S. S. Sastry, “A game theoretic approach to controller design for hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949–970, 2000.
  24. M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela, “Synthesis of control barrier functions using a supervised machine learning approach,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7139–7145, IEEE, 2020.
  25. A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert demonstrations,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724, IEEE, 2020.
  26. Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-agent control with decentralized neural barrier certificates,” arXiv preprint arXiv:2101.05436, 2021.
  27. C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust neural Lyapunov-barrier functions,” in Conference on Robot Learning, pp. 1724–1735, PMLR, 2022.
  28. C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A survey of neural Lyapunov, barrier, and contraction methods for robotics and control,” IEEE Transactions on Robotics, 2023.
  29. A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “Fossil: A software tool for the formal synthesis of Lyapunov functions and barrier certificates using neural networks,” in Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, pp. 1–11, 2021.
  30. Y. Yang, Y. Zhang, W. Zou, J. Chen, Y. Yin, and S. E. Li, “Synthesizing control barrier functions with feasible region iteration for safe reinforcement learning,” IEEE Transactions on Automatic Control, 2023.
  31. Polynomial Optimization, Moments, and Applications (M. Kocvara, B. Mourrain, C. Riener, eds.), Springer-Verlag, 2023.
  32. S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic safety verification using barrier certificates,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.
  33. S. Prajna, “Barrier certificates for nonlinear model validation,” Automatica, vol. 42, no. 1, pp. 117–126, 2006.
  34. H. Wang, K. Margellos, and A. Papachristodoulou, “Safety verification and controller synthesis for systems with input constraints,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 1698–1703, 2023.
  35. L. Wang, D. Han, and M. Egerstedt, “Permissive barrier certificates for safe stabilization using sum-of-squares,” in 2018 Annual American Control Conference (ACC), pp. 585–590, IEEE, 2018.
  36. H. Dai and F. Permenter, “Convex synthesis and verification of control-lyapunov and barrier functions with input constraints,” in 2023 American Control Conference (ACC), pp. 4116–4123, IEEE, 2023.
  37. S. Kang, Y. Chen, H. Yang, and M. Pavone, “Verification and synthesis of robust control barrier functions: Multilevel polynomial optimization and semidefinite relaxation,” arXiv preprint arXiv:2303.10081, 2023.
  38. G. C. Thomas, B. He, and L. Sentis, “Safety control synthesis with input limits: a hybrid approach,” in 2018 Annual American Control Conference (ACC), pp. 792–797, IEEE, 2018.
  39. B. He and T. Tanaka, “Barrier pairs for safety control of uncertain output feedback systems,” in 2023 American Control Conference (ACC), pp. 3669–3674, IEEE, 2023.
  40. P. Zhao, R. Ghabcheloo, Y. Cheng, H. Abdi, and N. Hovakimyan, “Convex synthesis of control barrier functions under input constraints,” IEEE Control Systems Letters, 2023.
  41. M. Korda, D. Henrion, and C. N. Jones, “Convex computation of the maximum controlled invariant set for polynomial control systems,” SIAM Journal on Control and Optimization, vol. 52, no. 5, pp. 2944–2969, 2014.
  42. A. Oustry, M. Tacchi, and D. Henrion, “Inner approximations of the maximal positively invariant set for polynomial dynamical systems,” IEEE Control Systems Letters, vol. 3, no. 3, pp. 733–738, 2019.
  43. P. A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. California Institute of Technology, 2000.
  44. SIAM, 1994.
  45. I. M. Mitchell et al., “A toolbox of level set methods,” UBC Department of Computer Science Technical Report TR-2007-11, vol. 1, p. 6, 2007.
  46. P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions with applications to multi-robot systems,” IEEE control systems letters, vol. 1, no. 2, pp. 310–315, 2017.
  47. N. Dinh and V. Jeyakumar, “Farkas’ lemma: three decades of generalizations for mathematical optimization,” Top, vol. 22, no. 1, pp. 1–22, 2014.
  48. Springer Science & Business Media, 2009.
  49. http://arxiv.org/abs/1310.4716, 2013. Available from http://www.eng.ox.ac.uk/control/sostools, http://www.cds.caltech.edu/sostools and http://www.mit.edu/~parrilo/sostools.
  50. J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625–653, 1999.

Summary

We haven't generated a summary for this paper yet.